АЛТАЙ И САЯНЫ

А.Ф. Еманов, А.Г. Филина, А.А. Еманов, А.В. Фатеев, Е.В. Лескова, М.А. Ярыгина

Сеть сейсмических станций региона претерпела в 1999 г. следующие изменения: с 1 января закрыта сейсмическая станция «Джой»; в режиме опытно-производственной эксплуатации открыта цифровая сейсмическая станция «Быстровка». В 1999 г. сейсмическая сеть большую часть года состояла из 15 станций. Параметры аппаратуры даны в табл. 1.

N₂	№ Станиия			Дата Координаты			ы	Аппаратура				
	Название	Код		открытия	ω°. N	λ°. E	$h_{\rm v}$,	Тип	Компо-	$V_{\rm max}/$	ΛT_{max}	
		межд.	рег.			,_	м	прибора	нента	чувствит-сть велосиграфа- отсчет/(м/с)	C	
1	Ельцовка	ELT	ЕЛЬ	05.07.1962	53.261	86.239	235	СКМ-3 СКМ-3* СКД	N, E, Z E N, E, Z	50000 5000 1200	0.25–1.3 0.25–1.3 0.20–18	
2	Усть-Кан	UKR	У-К	09.12.1962	50.939	84.769	1057	СКМ-3 СКМ-3* СКД	N, E, Z E N, E, Z	50000 5000 1200	0.25–1.3 0.25–1.3 0.20–18	
3	Эрзин	ERNS	ЭРЗ	08.07.1963	50.264	95.162	1100	СКМ-3 СКМ-3*	N, E, Z E	40000 4000	0.25–1.3 0.25–1.3	
4	Новосибирск	NVS	HCK	10.11.1965 01.05.1999	54.841	84.234	168	СКМ-3 СКМ-3* СКД ЦСС Байкал-11	N, E, Z E N, E, Z	50000 5000 1200	0.25–1.3 0.25–1.3 0.20–18	
5	Верх-База	VEH	В-Б	05.03.1967	53.255	90.299	550	СКМ-3 СКМ-3*	N, E, Z E	40000 4000	0.25–1.3 0.25–1.3	
6	Тээли	TEL	ТЭЛ	01.10.1971	51.024	90.195	992	СКМ-3 СКМ-3*	N, E, Z E	50000 5000	0.25–1.3 0.25–1.3	
7	Тюнгур** (закрыта в ноябре 1993 г.)	TUNR	ТНГ	01.01.1981 восстановл. 01.08.1998	50.163	86.317	864	ЦСС Байкал-11	Z N E	$1.4 \cdot 10^9$ $1.7 \cdot 10^9$ $2.6 \cdot 10^9$	0.30-20	
8	Артыбаш	ART	APT	22.06.1981	51.798	87.281	511	СКМ-3 СКМ-3*	N, E, Z	50000 5000	0.25-1.3	
9	Акташ	AƘAR	АКТ	01.01.1985	50.325	87.621	1421	CKM-3 CKM-3*	N, E, Z E	40000 4000	0.25-1.3	
10	Мина	MINR	МИН	29.07.1985	54.978	94.127	544	СКМ-3 СКМ-3*	N, E, Z E	50000 5000	0.25–1.3	
11	Таштагол	TASR	ТШТ	01.09.1988 01.12.1999	52.762	87.880	553	СКМ-3 СКМ-3* ЦСС Байкал-11	N, E, Z E	15000 1000	0.25–1.3 0.25–1.3	
12	Черемушки	CERR	ЧЕР	05.09.1990	52.8568	91.415	400	СКМ-3 СКМ-3*	N, E, Z E	50000 5000	0.25–1.3 0.25–1.3	
13	Джой (закрыта 01.01.1999 г.)	DJO	ДЖ	24.10.1990	52.780	91.220	600	CKM-3	N, E, Z	50000	0.25–1.3	
14	Арадан	ARDR	АРД	06.06.1992	52.580	93.428	958	CKM-3	N, E, Z	60000	0.25-1.3	

Таблица 1. Сейсмические станции Алтая и Саян (в хронологии их открытия), работавшие в 1999 г., и их параметры

№	Ста	Дата Координаты			Аппаратура						
	Название	Код		открытия	φ°, Ν	λ°, Ε	$h_{\rm y}$,	Тип	Компо-	V _{max} /	$\Delta T_{\rm max}$,
		межд. рег.					м	прибора	нента	чувствит-сть	С
										велосиграфа-	
										отсчет/(м/с)	
15	Тоджа	TDJR	ТДЖ	27.07.1980	52.424	96.095	992	СКМ-3	N, E, Z	50000	0.25-1.3
	(закрыта в			восстановл.				СКМ-3*	Е	5000	0.25-1.3
	1994 г.)			16.03.1997							
16	Берчикуль**	ерчикуль** BRCR БРЧ 01.09.1998		01.09.1998	55.635	88.299	381	ЦСС	N, E, Z	$1.0 \cdot 10^9$	0.30-10
								Байкал-11			
17	Быстровка**	BST		1999	54.568	82.653	121	ЦСС	Z, E	$4.0 \cdot 10^9$	0.50-20
	_							Байкал-11			
									Ν	$3.5 \cdot 10^9$	0.50-20

Примечание. ЦСС – цифровая сейсмическая станция; знаками * и ** помечены каналы КПЧ и цифровые станции соответственно; для всех станций даны новые (относительно [1]) замеры координат по данным GPS.

Результаты расчета энергетической представительности K_{\min} землетрясений, зарегистрированных сетью сейсмических станций (табл. 1), представлены на рис. 1. Общая конфигурация изолиний K_{\min} , по сравнению с таковой в 1998 г. [1], не претерпела существенных изменений. При расчете представительности сейсмических станций Монголии использовались уточненные, по сравнению с 1998 г., данные. Кроме юго-западного угла, для всей территории региона представительны землетрясения с $K_P \ge 8$, а для центральной части – Алтае-Саянской складчатой области с $K_P = 7$.

Рис. 1. Карта энергетической представительности *К*_{min} землетрясений Алтая и Саян за 1999 г.

<u>Примечание ред</u>. В [1] ошибочно переставлены рис. 1 и 2. В результате изображенные на них поля не соответствуют подписям к ним. На самом деле в [1] на рис. 1 изображена карта погрешности, а на рис. 2 – карта представительности.

Наименьшая ошибка локации землетрясений $\delta=\pm 4 \ \kappa m$ относится к Алашскому плато и участку в центре Тувинской котловины. С ошибкой $\delta=\pm 5 \ \kappa m$ определяются эпицентры для значительной части Алтая, Западного Саяна и гор Тувы. Изолиния ошибки $\delta=\pm 10 \ \kappa m$ охватывает

большую часть территории Алтае-Саянской горной области, а в южной части Монгольского Алтая и на западной окраине региона – δ=±20 *км*. Методика расчета представительности и точности описана в работе [2].

Рис. 2. Карта погрешности б, км локации эпицентров землетрясений в 1999 г.

Всего в 1999 г. зарегистрировано 1045 землетрясений с K_P =5.0–12.8, распределение которых по энергетическим классам показано в табл. 2. Относительно аналогичных данных за 1998 г. [1] наблюдается заметное понижение сейсмичности: число землетрясений уменьшилось почти в 1.5 раза, суммарная энергия – более чем в 3 раза. В 1998 г. аналогичную таблицу возглавляет одно землетрясение четырнадцатого класса, но и по всем другим энергетическим классам в 1999 г. число землетрясений меньше, чем в предыдущем году.

Таблица 2. Распределение числа землетрясений Алтая и Саян по энергетическим классам Кр

$K_{\rm P}$	<5	5-6	7	8	9	10	11	12	13	N_{Σ}	Σ <i>E</i> ·10 ¹³ , Дж
N	104	204	435	191	71	27	9	2	2	1045	2.3264

Однако в каталог [3] в наст. сб. традиционно включены лишь события с $K_P \ge 8.6$. Более того, этот каталог дополнительно «усечен» по долготе – включены лишь толчки с $\lambda \le 99.3^{\circ}$, хотя на карте эпицентров (рис. 3) есть землетрясения до $\lambda = 102^{\circ}$. В итоге суммарное число землетрясений, приведенных в [3], равно 111.

На рис. 3 дана карта эпицентров землетрясений за 1999 г., где землетрясения с $K_P \le 9.6$ нанесены постоянным малым кругом, а более сильные – с переменным, что нагляднее представляет более сильные события. Размещение эпицентров землетрясений за 1999 г. контролируется блочным строением региона. Эта закономерность устойчиво сохраняется из года в год [4]. Совместное рассмотрение пространственно-временных особенностей сейсмичности и рельефа местности показало, что в Алтае-Саянской горной области существует устойчивая во времени связь между особенностями рельефа и проявлениями сейсмической активности [5].

Рис. 3. Карта эпицентров землетрясений Алтая и Саян за 1999 г.

Так, вокруг Джунгарской впадины в 1999 г. концентрируются цепи эпицентров землетрясений. Особенностью рассматриваемого периода является повышенная сейсмическая активность в районе Зайсанской впадины и ее горного обрамления. Котловина Больших озер окружена со всех сторон эпицентрами землетрясений. Отметим, что такая сейсмическая активизация вокруг этой впадины отмечается нечасто. Западное обрамление котловины Убсу-Нур как всегда характеризуется стабильной сейсмической активностью. Отличительным для 1999 г. является наличие очагов землетрясений в самой котловине Убсу-Нур. Цепь землетрясений протянулась с севера на юг в центральной ее части. Внутри впадины оказались землетрясения седьмого энергетического класса. Для Тувинской котловины сейсмичность проявляется по ее западному обрамлению. Это, прежде всего, Шапшальский хребет и прилегающие к нему структуры Западного Саяна. Весьма сейсмоактивна линейная зона в центральной части Тувинской котловины, проявляющая себя в сейсмичности ежегодно. Как известно, Тувинская котловина состоит из трех частей [5]: западная часть – Хемчикская впадина, центральная – Улугхемская впадина, восточная – Кызыльская впадина. Устойчиво проявляет себя в сейсмичности за год приподнятая перемычка между Улугхемской и Кызыльской впадинами. Аналогичной положительной структурой в рельефе выражена и граница между Хемчикской и Улугхемской впадинами, но сейсмический процесс вдоль этой границы проявляет себя в виде линейной сейсмической зоны за период около пяти лет [4]. В 1999 г. в пределах этой границы произошло одно землетрясение шестого энергетического класса. Можно считать, что эта зона в данный период была асейсмична. Сейсмическая активность проявилась сильнее, чем обычно, вдоль северного обрамления Тувинской котловины, прилегающей к хр. Обручева. Отмечаются землетрясения вдоль всего северного горного обрамления котловины. Наиболее сильные сейсмические события приурочены к Уюкскому хребту. Восточное окончание Тувинской впадины в 1999 г. ярко обозначено эпицентрами землетрясений. Устойчиво сейсмически активна пограничная зона Алтае-Саянской горной области и рифтовых структур Прихубсугулья. Сейсмическая активизация охватила субмеридиональную зону, простирающуюся от Восточного Саяна на севере через впадины Белинская, Бусингольская и Терехольская до отрогов хр. Сангилен на юге. Для более

восточной, чем упомянутая выше система впадин, Дархатской впадины характерна приуроченность сейсмичности к ее центральной части, что обычно характерно для впадин рифтового типа. Уверенно выделяется как зона упорядоченной сейсмичности район Курайской и Чуйской впадин. Сейсмически активен весь Курайский хребет обрамляющий Курайскую и Чуйскую впадины с севера, а также Чаган-Узунский блок, являющийся горной перемычкой между названными впадинами. Весьма сейсмоактивна и граница Северо-Чуйского хребта с Курайской впадиной. В этом районе преимущественно происходят землетрясения малых энергий, а максимальные по энергии события девятого энергетического класса приурочены к северозападному окончанию Курайского хребта. На карте (рис. 3) крупнейшими являются два землетрясения тринадцатого энергетического класса, которые произошли 4 ноября в $23^h 37^m$ (K_p =12.8) на востоке горной области, в окрестности Белинской впадины и 9 ноября в $16^h 25^m$ (K_p =12.7) на юго-западе, в горном обрамлении Зайсанской впадины.

Землетрясение 4 ноября сопровождалось афтершоками (табл. 3) и было ощутимым (Орлик 3 балла, Иркутск – 2–3 балла [6]). Из таблицы следует, что величина энергетической ступени между основным толчком и его максимальным афтершоком равна

$$\Delta K_{\rm a} = 12.8 - 11.1 = 1.7.$$

				-	-		-						
№	Дата, д м	t ₀ , 4 мин с	Эпиі φ°, N	ιентр λ°, Е	<i>h</i> , м	Мс	^MS #Ms	^MPSP #m _b	$K_{ m P}$				
	Основной толчок												
	04.11	23 37 25.1	51.79	98.30	10*	4.9	^4.4/12	^5.0/5	12.8				
							#4.4/21	#4.5/56					
				Афтерш	юки								
1	08.11	23 13 03.3	51.77	98.31	10*	3.8		^4.8/1	11.1				
2	26.11	20 51 23.9	51.84	98.30		3.0							
3	26 11	20 58 46 4	51.84	98 35					87				

Таблица 3. Список афтершоков (с $K_P \ge 8.6$) землетрясения 4 ноября в $23^h 37^m$ с $K_P = 12.8$

Примечание. Глубина гипоцентра дана по [6].

Фактически землетрясение 4 ноября произошло в системе линейно вытянутых рифтовых впадин на границе двух существенно различающихся по геодинамическим процессам областей. Как уже отмечалось [1, 4], периоды сейсмической активизации в двух соседних вытянутых в линию впадинах – Белинской и Бусингольской, происходят не одновременно. Бусингольская впадина активизировалась при Бусингольском землетрясении 27.12.1991 г. с *К*_P=16, *M*=6.5 [7], после которого сформировался уникальный по длительности и характеру пульсирующий афтершоковый процесс, продолжающийся по сей день [4]. Белинская впадина неоднократно испытывала быстро затухающие сейсмические активизации. Первая такая активизация в 1974-1975 гг. сформировалась как афтершоковый процесс землетрясения 29.11.1974 г. с *К*_P=13.6 (*M*=5.2). Анализ этой активизации в окрестности впадины можно найти в [8]. Там же дано сравнение этой активизации с аналогичной в окрестности Бусингольской впадины, возникшей как афтершоковый процесс землетрясения 01.04.1976 г. с К_Р=13.6 (М=5.4). В 1999 г. произошло второе за историю инструментальных наблюдений землетрясение с $K_P > 12$ в окрестности Белинской впадины, но афтершоковый процесс оказался существенно слабее, чем в 1974 г. Используя результаты пространственно-временного анализа сейсмичности района Белинской и Бусингольской впадин [1, 4] и анализ результатов развития афтершоковых процессов двух землетрясений с К_Р=13.6 в этих впадинах [8], попробуем разобраться в вопросе, что общего и индивидуального в двух крупнейших для Белинской впадины землетрясениях в 1999 и 1974 гг., и имеет ли землетрясение 1999 г. отношение к уникальной по длительности сейсмической активизации Бусингольской впадины, начало которой положило Бусингольское землетрясение 1991 г.

Как было отмечено в [8], для землетрясений одного и того же энергетического класса мы имеем существенно различающиеся по размерам афтершоковые области. В Белинской

впадине длина эллипса афтершоковой области для события 1974 г. равно 20 км, а в Бусингольской впадине для землетрясения 1976 г. – более 50 км. Столь значимое различие должно быть связано с особенностями строения этих двух впадин. Обе впадины составляют границу рифтовой зоны с Алтае-Саянской горной областью. Одна впадина как бы является продолжением другой. Длины впадин примерно одинаковы. Рассматриваемые впадины из семейства рифтовых впадин Хубсугулья самые узкие. Бусингольская впадина – прямая и имеет практически одну и ту же ширину на всем своем протяжении. Белинская впадина имеет изогнутый к северо-западу профиль. В северо-восточной части ее ширина приближается к ширине Бусингольской впадины, но после резкого изгиба она сужается практически до ущелья, в котором течет р. Белин. Восточным обрамлением для Белинской и Бусингольской впадин являются Шишхидское нагорье, имеющее сложное блочное строение.

На рис. 4 даны наборы карт эпицентров, характеризующие развитие сейсмического процесса во времени при землетрясениях в Белинской впадине в 1974 и 1999 гг. Эпицентры этих двух практически равных по энергии землетрясений по координатам очень близки друг к другу. Землетрясение 1974 г. произошло чуть восточнее очага землетрясения 1999 г. и. соответственно, дальше в горах. В зоне будущего очага в 1973 г. наблюдается затишье. Слабые землетрясения окружают будущую афтершоковую область, но не затрагивают ее. Карта для 1974 г. показывает, что как само землетрясение, так и афтершоковая область полностью сосредоточены в горном обрамлении Белинской впадины. Афтершоковая область в 1974 г. компактна, в 1975 г. расширяется, но незначительно, а в 1976 г. афтершоковый процесс почти затих. Перед землетрясением 4 1999 г. ноября такой ясной картины сейсмического затишья, как перед землетрясением 1974 г., не видно (рис. 4), да и афтершоковый процесс выражен слабее. Заметим, однако, что предыстория сейсмической активности описываемой Белинской впадины выявлена за длительное время. Согласно [9], по сейсмогеологическим данным, в низовьях р. Белин, в месте сужения впадины, имеются следы достаточно крупных землетрясений. Эпицентр землетрясения с *К*_P=12.8 в 1999 г., так же, как и 1975 г., находится в зоне горного выступа, искривляющего Белинскую впадину, но это землетрясение располагается несколько восточнее и попадает в зону седловины в рельефе. Область афтершоков от эпицентра главного события вытянулась в северном направлении во впадину. Длительность и интенсивность афтершокового процесса оказалась существенно меньшей, чем при землетрясении 1974 г.

Землетрясение 9 ноября в хр. Тарбагатай с *К*_P=12.7 локализовано на крайнем югозападе региона, на территории Казахстана, и ощущалось в Усть-Каменогорске с *I*=2–3 балла [6]. Это землетрясение афтершоков не имело. Сведения о нем содержатся в наст. сб. также в каталогах Центральной Азии [10] и Казахстана [11]. Землетрясение 9 ноября также является незаурядным явлением. Район Зайсанской впадины и ее горного обрамления с 1963 г. по 1990 г. характеризовался слабой сейсмичностью. 14.06.1990 г. произошло одно из крупнейших землетрясений Алтая – Зайсанское (М=6.9) [12–14]. Очаг землетрясения располагался на глубине 30-40 км под впадиной. Он связан с зоной Уленгуро-Зайсанского (Иртышского) разлома. За четыре месяца после главного события зарегистрировано 464 афтершока, а в целом афтершоковый процесс затих довольно быстро, и в последующие годы район Зайсанской впадины сейсмически спокоен. В 1999 г. вдоль Иртышского разлома вытянулась цепь слабых землетрясений, а наиболее крупные землетрясения зоны сосредоточены в хребтах, обрамляющих впадину с двух сторон: в хр. Тарбагатай – землетрясение 9 ноября с K_P=12.7, в хр. Курчумский – 19 мая с *К*_P=11.1 [3]. В 1998 г. впервые возникла подобная ситуация, когда в названных хребтах произошло по одному землетрясению с *K*_P≥13: 22.01. в 16^h05^m с *K*_P=13.6 и 12.07. в 07^h16^m с *K*_P=13.3 [15]. Для данных хребтов землетрясения таких классов не регистрировались за весь период существования сети станций на Алтае.

В итоге отметим, что землетрясения двенадцатого энергетического класса зафиксированы в северо-западном углу котловины Больших озер и на оперяющем разломе Болнайской разломной зоны. Землетрясения одиннадцатого энергетического класса зафиксированы с севера и юга котловины Больших озер, в окрестностях Бусингольской и Терехольской впадин, в горном обрамлении Тувинской котловины (преимущественно с севера). Чаще северное обрамление Тувинской котловины менее сейсмично, чем южное [12].

Рис. 4. Годовые карты эпицентров землетрясений участка Белинской впадины за 1973–1976 гг. и 1998–2001 гг.

В целом в сейсмическом отношении Алтае-Саянская складчатая зона в 1999 г. относительно спокойна и сейсмический режим упорядочен. В восточной части области продолжается пульсирующая сейсмическая активизация, вызванная Бусингольским землетрясением, характеризующаяся в 1999 г. событиями до одиннадцатого энергетического класса с одновременной линейной организацией сейсмического процесса на всю длину Бусингольской впадины. Максимальное в 1999 г. для Белино-Бусингольской зоны землетрясение с K_P =12.8 прямой связи с Бусингольской активизацией не имеет. Афтершоковый процесс этого землетрясения локализуется в небольшой, по сравнению с длиной впадины, зоне (15 км). Второе по величине землетрясение за 1999 г. с K_P =12.7 произошло в хр. Тарбагатай. Как уже отмечено, Зайсанское землетрясение произошло внутри впадины, но в настоящий момент наиболее крупные события второй год происходят в горном обрамлении, а во впадине фиксируется слабая сейсмичность.

Литература

- 1. Еманов А.Ф., Филина А.Г., Еманов А.А., Фатеев А.В., Ярыгина М.А. Алтай и Саяны // Землетрясения Северной Евразии в 1998 году. – Обнинск: ФОП, 2004. – С. 116–125.
- 2. Фатеев А.В., Филина А.Г., Кабанник А.В. Представительность и точность определения параметров эпицентров в АСОМСЭ СО РАН // Проблемы сейсмологии III-го тысячелетия. Материалы международной геофизической конференции, г. Новосибирск, 15–19 сентября 2003 г. – Новосибирск: Наука, СО РАН, 2003. – С. 145–153.
- 3. Филина А.Г., Подкорытова В.Г., Фатеев А.В. (отв. сост.), Данциг Л.Г., Манушина О.А., Подлипская Л.А., Слепенкова Э.А. Алтай и Саяны. (См. раздел VI (Каталоги землетрясений) в наст. сб. на CD).
- 4. Еманов А.Ф., Еманов А.А., Филина А.Г., Лескова Е.В. Пространственно-временные особенности сейсмичности Алтае-Саянской складчатой зоны // Физическая мезомеханика. 2005. № 1. С. 49–64.
- 5. Чернов Г.А. К изучению сейсмогеологии и неотектоники Алтае-Саянской горной области // Сейсмогеология восточной части Алтае-Саянской горной области – Новосибирск: Наука, СО АН СССР, 1978. – С. 6–27.
- 6. Сейсмологический бюллетень (ежедекадный) за 1999 год / Отв. ред. О.Е. Старовойт. Обнинск: ЦОМЭ ГС РАН, 1999–2000.
- 7. Филина А.Г. (отв. сост.), Пугачева В.Н., Манушина О.А., Слепенкова Э.А., Ибрагимова Г.Г. (сост.). Алтай и Саяны // Землетрясения в СССР в 1991 году. М.: ОИФЗ РАН, 1997. С. 38–142.
- 8. Сейсмотектоника и сейсмичность Прихубсугулья / Под общ. ред. Н.А. Логачева. Новосибирск: Наука, СО РАН, 1993. 184 с.
- Вдовин В.В. Следы землетрясений в Белино-Бусингольской впадине Восточной Тувы // Сейсмогеология восточной части Алтае-Саянской горной области. – Новосибирск: Наука, СО АН СССР, 1978. – С. 68–72.
- 10. Джанузаков К.Д. (по региону), Соколова Н.П. (Кыргызстан), Калмыкова Н.А. (Казахстан), Гиязова Ш.Ш. (Узбекистан), Сопиева К., Жунусова Ж., Айбашева К., Шипулина С.А., Умурзакова Р.А., Проскурина Л.П., Ульянина И .А., Каймачникова Н.И., Гайшук Л.И., Тулегенова М.К., Абдыкадыров А.А. Центральная Азия. (См. раздел VI (Каталоги землетрясений) в наст. сб. на CD).
- 11. Михайлова Р.С. Северный, Восточный и Центральный Казахстан. (См. раздел VI (Каталоги землетрясений) в наст. сб. на CD).
- 12. Масарский С.И., Рейснер Г.И. Новейшие тектонические движения и сейсмичность Западного Саяна и Западной Тувы. М.: Наука, 1971. 154 с.
- 13. Нурмагамбетов А., Садыков А., Тимуш А.В., Хайдаров М.С., Власова А.А., Михайлова Н.Н., Сабитов М.М., Умирзакова А., Гапич В.А. Зайсанское землетрясение 14 июня 1990 г. // Землетрясения в СССР в 1990 году. – М.: ОИФЗ РАН, 1996. – С. 54–60.
- 14. Рогожин Е.А., Леонтьев А.Н. Зайсанское землетрясение 1990 г.: деформации на поверхности и тектоническая позиция очага // Физика Земли. 1992. № 9. С. 3–14.
- 15. Филина А.Г., Подкорытова В.Г., Фатеев А.В. (отв. сост.), Манушина О.А., Подлипская Л.А., Данциг Л.Г., Слепенкова Э.А. Алтай и Саяны // Землетрясения Северной Евразии в 1998 году. – Обнинск: ФОП, 2004. – (На CD).