САХАЛИН

Т.А. Фокина, И.А. Паршина, М.И. Рудик, А.О. Бобков, А.А. Шолохова,

Ким Чун Ун, Сен Рак Се

В 1996 г. параметры землетрясений региона, включающего территорию о. Сахалин с шельфом и восточную часть Приамурья, определены на основе материалов наблюдений, полученных на четырех сейсмических станциях Сахалина (табл. 1), а также данных сейсмических сетей Приамурья [1], Курильских островов [2] и бюллетеней ОМЭ ОИФЗ РАН [3], JMA, ISC [4].

Таблица 1. Сейсмические станции Сахалина, работавшие в 1996 г. и их параме	тры
--	-----

N⁰	Ста	нция		Дата	Кс	ординат	ы	Аппаратура			
	Название	Кс	д	открытия	φ°, N	λ°, E	h _v ,	Тип	Компо-	V _{max} /	ΔT_{max} ,
		Межд.	Рег.	-			M	прибора	нента	чувствительность	с
1	2	3	4	5	6	7	8	9	10	11	12
1	Южно-	YSS	ЮСХ	07.03.1957	46.97	142.77	100	СКМ	N,E,Z	40000	0.33-0.85
	Сахалинск*								N,E,Z	40000	0.33-0.85
									N,E,Z	10000	0.31-0.84
								СКД	N,E,Z	1000	0.20-20.0
									N,E,Z	500	0.20-18.0
									N,E,Z	200	0.20-16.0
								СКД,КПЧ	N,E,Z	100	0.17-15.0
								C-5-B	N,E,Z	25.0 c	0.045-4.6
									N,E,Z	2.5 c	0.045-4.6
								ОСП	Ν	$0.04 c^2$	0.020-1.1
									E	$0.04 c_{\perp}^2$	0.020-2.2
									Ζ	$0.04 c^2$	0.019-2.8
								CP3	Ν	$0.0209 c^2$	0.058-11.0
									E	0.0210 c^2	0.054-11.0
									Z	$0.0209 c^2$	0.054-11.0
2	Углегорск	UGL	УГЛ	01.12.1950	49.08	142.07	25	СКМ	N,E,Z	10000	0.36-0.65
									N,E,Z	5000	0.36-0.65
								0147	N,E,Z	2500	0.36-0.65
								СКД	N,E,Z	1000	0.20-20.0
									N,E,Z	500	0.20-18.0
								0 5 D	N,E,Z	200	0.20-16.0
								С-5-В	N,E,Z	25.0 c	0.045-4.6
									N,E,Z	2.5 c	0.045-4.6
								CD2	N,E,Z	0.05 c 0.0228 z^2	0.02-1.1
								CP3		0.0238 c 0.0220 s^2	0.06/-11.0
										0.0230 c 0.0220 c^2	0.066 11.0
								C = C		200	0.000-11.0
								C-3-C	N,E,Z N E Z	20	0.36-0.7
3	Oxa	OKH	OXA	01.12, 1958	53.60	142.94	36	СКМ	N.E.Z	6000	0.35-0.73
-									N.E.Z	3000	0.35-0.73
								СКД	N.E.Z	1000	0.20-20.0
									N.E.Z	500	0.20-18.0
									N,E,Z	200	0.20-16.0
								C-5-B	N,E,Z	25.0 c	0.045-4.6
									N,E,Z	2.5 c	0.045-4.6
								ОСП	N,E,Z	$0.045 c^2$	0.03-1.0
								CP3	Ν	$0.015 c^2$	0.045-0.08
									E	$0.014 c^2$	0.045-0.08
									Ζ	$0.016 c^2$	0.051-0.11
								C-5-C	N,E,Z	25.0	2.0-4.8
									E.Z	1.0	2.0-4.8

N⁰	Ста	анция		Дата	Кс	ординат	гы	Аппаратура				
	Название	Кс	д	открытия	φ°, N	λ°, E	h _v ,	Тип	Компо-	V _{max} /	ΔT_{max} ,	
		Межд.	Рег.		-		Ň	прибора	нента	чувствительность	с	
1	2	3	4	5	6	7	8	9	10	11	12	
4	Тымовское*	TIV	TMC	02.04.1969	50.86	142.66	160	СКМ	N,E	50000	0.17-0.61	
									N,E	25500	0.14-0.58	
									Ζ	110000	0.48-0.68	
									Ζ	50000	0.36-0.65	
									Ζ	25000	0.35-0.66	
								СКД	N,E,Z	1000	0.020-20.0	
									N,E,Z	500	0.020-18.0	
									N,E,Z 200		0.020-16.0	
								С-5-В	N,E,Z	25.0 c	0.045-4.6	
									N,E,Z	2.5 c	0.045-4.6	
								ОСП	N $0.04 c^2$		0.03-1.0	
									E	$0.04 c^2$	0.03-2.0	
									Z $0.04 c^2$		0.03-2.0	
								CP3	CP3 N,E $0.0018 c^2$		0.055-10.0	
									Z $0.0017 c^2$		0.055-10.0	
								C-5-C	C-5-C N,E,Z 50.0		2.0-4.8	
									N,E,Z	5.0	2.0-4.8	

Примечание: Знаком * помечены опорные станции. Сейсмографы С-5-С, велосиграфы С-5-В, акселерографы ОСП и СРЗ работают в ждущем режиме регистрации.

Кроме того, в 1996 г. на Сахалине действовали две локальные сети временных полевых станций "Datamark", с цифровой регистрацией на базе сейсмометров производства Японии с f_c=4.5 Гц. Первая сеть из 5 станций (табл. 2), работала с 3 по 18 августа на севере о. Сахалин, в эпицентральной области Нефтегорского землетрясения 27.05.1995 [13]. В то же время там работала телесейсмическая станция ИФЗ, данные которой, наряду с данными станций "Datamark", использовались для определения параметров землетрясений. Вторая сеть из 4 станций "Datamark" (табл. 2) работала на юге острова, с 11 июня по 28 октября.

Таблица 2. Координаты пунктов постановки станций "Datamark" и телеметрической станции ИФЗ в 1996 г.

№	Пункт	Код станции	Координат	ты станции	Компонента					
	-		φ°, Ν.	λ°, Ε						
На севере о. Сахалин										
1	Разломный	FLT	52.94883	142.94717	N,E,Z					
2	Гора Сабо	MSB	53.06944	143.04692	N,E,Z					
3	Мухто	MHT	52.89099	142.99124	N,E,Z					
4	Западнее Нефтегорска	WNG	53.05868	142.86485	N,E,Z					
5	Западнее Сабо	WSB	53.13499	142.89884	N,E,Z					
6	Телеметрическая станция ИФЗ	H22	53.16519	143.07733	N,E,Z					
		На юге о	. Сахалин							
1	Петропавловское	PTP	46.7965	142.4820	N,E,Z					
2	Ожидаево	OJD	47.0350	142.3875	N,E,Z					
3	Белые скалы	BSK	46.8333	142.3148	N,E,Z					
4	Зеленодольск	ZLD	46.6666	142.3828	N,E,Z					

Методы обработки данных [5-10] и схема деления региона на районы [11,12] не изменились. По данным стационарных сейсмических станций в 1996 г. были определены параметры 549 гипоцентров землетрясений с $K_C \ge 5.6$, из них 15 – с привлечением данных временных станций. Локальные сети цифровых станций зарегистрировали, в основном, слабые землетрясения, не вошедшие в региональный каталог [14]: 128 событий – на севере (табл. 3, рис. 1), которые, повидимому, являются афтершоками катастрофического Нефтегорского землетрясения 27.05.1995 г. в 13^h03^m с MLH=7.0 [13], и 21 – на юге (табл. 4, рис. 2).

Дата		t ₀ ,		Эпи	центр	h,	K _P	Дата	t ₀ ,		Эпи	центр	h,	K _P
д м	ЧМ	иин	сек	φ°,N	λ°,E	КМ		Д М	ч мин	сек	φ°,N	λ°,E	КМ	
1		2		3	4	5	6	1	2		3	4	5	6
03.08	07	14	05.3	53.076	142.930	9	7.8	12.08	13 35	29.9	52.808	142,792	6	6.5
03.08	15	39	27.1	52,608	142 719	6	8.0	12.08	15 20	153	53 848	142.867	8	81
03.08	16	41	00.9	52 881	142 924	ğ	65	12.08	15 58	06.0	53 094	142 885	ğ	67
03.08	22	54	13.4	52.001	1/2 911	16	6.6	12.00	18 14	13.2	52 633	142.666	$\hat{22}$	9.8
03.00	22	21	30.0	53.026	142.911	10 Q	6.0	12.00	10 17 22 20	46.5	53.002	142.000	0	6.2
04.08	07	27	30.0 41.5	53.020	142.095	0	6.5	12.00	122 39	24.0	52.092	142.960	9 1	0.2
07.00	00	37 21	41.3	52.099	142.944	27	0.5	13.00	02 44 02 55	20.0	53.080	142.933	1	7.0
07.08	109	25	56.0	55.028	142.988	/	0.1	15.08	02 33	20.8	52.585	142.038	0	9.0
07.08	12	33	30.4	52.801	142.843	9	0.0	13.08	06 04	41.0	52.992	142.891	10	8.3
07.08	14	29	27.9	52.548	142.697	6	8.3	13.08	07 52	25.9	52.953	142.873	10	7.0
07.08	18	31	40.4	52.857	142.744	2	6.3	13.08	10 39	39.0	53.051	142.953	9	1.2
07.08	20	00	38.2	53.0/1	142.914	8	8.1	13.08		30.4	52.914	142.9143	1	6.5
08.08	00	20	31.1	52.810	142.846	6	7.0	13.08	11 49	36.7	52.978	142.809	9	6.7
08.08	05	13	56.5	52.645	142.842	5	8.0	13.08	13 59	14.8	53.117	142.802	0	7.2
08.08	08 1	38	08.8	53.074	142.972	2	5.5	13.08	15 17	58.4	52.933	142.919	10	6.7
08.08	10	38	15.7	52.992	142.466	0	9.2	13.08	15 24	29.9	52.837	142.872	7	8.0
08.08	11 3	34	07.8	53.238	142.691	8	8.5	13.08	15 40	25.7	52.820	142.840	8	8.3
08.08	14	01	48.8	53.028	142.961	11	6.2	13.08	17 42	27.0	53.058	142.982	6	6.2
08.08	14 4	46	51.6	53.087	142.964	10	5.5	13.08	22 05	56.2	53.029	142.945	9	5.7
08.08	14	51	33.3	53.213	142.719	2	7.6	14.08	02 44	40.1	53.068	143.071	6	5.6
08.08	17	55	58.3	53.102	143.016	2	6.8	14.08	03 24	20.3	53.102	142.944	10	6.1
08.08	18	48	35.7	52.955	142.882	10	7.6	14.08	06 20	45.5	53.068	143.071	6	5.6
08.09	19	19	02.9	52.963	143.102	5	6.2	14.08	13 42	51.1	52.551	142.635	5	9.2
08.08	22	31	36.2	53 142	142,926	5	64	14.08	13 54	46.8	52 551	142.658	6	89
09.08	10	16	05.2	52 846	142 855	5	64	14.08	20 12	11 1	52 793	142 7353	Š	8.0
09.08	10	38	33.9	53 089	142.055	ğ	67	15.08		09.8	53 055	142 957	1	64
09.00	10	18	30.3	52 778	142.952	â	8.0	15.00	01 32	51.1	53.096	142.957	12	6.0
09.00	12	40 /0	40.2	53 076	142.045	7	6.1	15.00	$01 \ 52 \ 02 \ 27$	55.2	53.000	142.952	0	8.0
09.00	$12 \cdot 12$	42 50	40.2 25 7	52 556	142.939	5	10.1	15.00	02 27 05 02	02.0	52 100	142.090	0	0.0
09.08	12 .	52 07	15 1	52.550	142.750	16	10.1	15.00	05 03	03.0	53.100	142.940	10	7.2 5 0
09.08	13	50	10.1	52.019	143.273	10	0.5	15.08	03 20	08.0	55.095	142.942	10	J.0 77
09.08	13 .	29 20	10.2	52.902	142.900	15	0.0	15.08	00 12	00.5	52.978	142.907	11	/./
09.08	14 .	28	18.4	53.100	142.755	10	1.8	15.08	06 27	05.1	52.975	142.894	11	9.2
09.08	15 :	50	19.3	53.014	142.961	10	6.2	15.08	0/ 3/	36.6	53.089	142.946	1	6.9
09.08	16	19	12.2	52.994	142.869		6.3	15.08	0/ 3/	58.9	53.098	142.937	9	6.7
09.08	16	50	38.8	52.802	142.826	9	6.9	15.08	07 55	13.9	52.993	142.858	1	5.8
09.08	20 4	40	20.7	53.222	142.698	13	7.4	15.08	10 10	55.6	53.128	142.959	9	7.6
10.08	03 .	37	41.9	52.836	142.815	5.	7.6	15.08	11 08	52.3	52.533	142.721	20	9.6
10.08	03 :	56	10.5	52.801	142.899	11	7.6	15.08	12 09	46.4	52.628	142.625	9	8.4
10.08	04	13	14.9	53.096	142.943	1	6.5	15.08	13 19	55.7	52.659	142.774	6	7.6
10.08	05	14	05.8	53.008	142.759	1	6.8	15.08	15 07	14.9	53.100	142.951	9	6.0
10.08	05	15	54.7	52.907	142.837	3	7.8	15.08	16 09	55.8	53.091	142.937	1	6.5
10.08	08 :	51	05.5	52.978	142.811	8	6.2	15.08	17 11	34.0	52.840	142.876	9	6.3
10.08	12 (02	39.3	53.017	142.981	12	5.7	15.08	19 05	33.8	53.052	142.959	6	6.6
10.08	13 :	53	32.8	52.840	142.779	12	6.5	16.08	01 08	16.1	52.817	142.786	6	7.2
10.08	16	34	42.9	52.999	142.921	0	6.0	16.08	01 17	54.6	52.604	142.637	8	9.5
10.08	17 1	32	14.5	52.814	142.881	5	7.5	16.08	04 14	26.5	52.671	142.827	6	8.0
10.08	18 4	40	05.9	52.069	142.931	10	5.5	16.08	08 23	40.5	52.826	142.840	5	7.1
10.08	21	08	35.2	52.850	142.787	7	6.6	16.08	09 09	39.6	53.095	142.954	1	7.8
10.08	23	08	16.3	52.971	142.757	2	6.3	16.08	13 28	38.0	52.841	143.023	15	7.3
11.08	00	34	48.6	53.080	143.016	7	6.0	16.08	16 10	54.0	53.105	142.934	17	6.8
11.08	04	12	50.4	52.829	142.765	6	7.2	16.08	16 19	25.1	52,970	142.918	10	8.0
11.08	06	58	01.6	52.894	142.884	11	8.8	16.08	16 59	16.6	52.947	142,919	9	6.2
11.08	08	48	36.6	52.859	142.852	5	6.8	16.08	19 19	22.4	52,679	142.725	6	77
11.00	10	53	35.7	52.055	142 911	14	67	16.08	20 23	31.9	52 995	142 901	10	7.0
11.00	12	48	28.5	52.968	142.832	14	63	16.00	20 23 22 51	13.1	53 181	142.853	1	7.6
11.00	13	01	18.6	53 004	142.032	9	6.2	16.00	23 37	42.8	52 579	142 750	6	83
11.00	13	35	59.2	53 001	142.925	ó	6.8	17 08	04 31	56.6	52.964	142 924	8	70
11.00	1/	03	33.0	52 0/0	1/2 0/7	å	6.1	17.00	08 15	26.1	52.004	1/2 836	2	6.4
11.00	10	32	05.2	52.247 57 581	142.747	7 6	86	17.00	08 13	20.1	52.910	142.030	11	0.4 87
11.00	22	32 32	28 1	52.501	142.013	0	6.6	17.00	08 24	20.7	52.905	142.714	11	$\frac{0.7}{77}$
11.00	$\frac{22}{22}$	33 34	20.4 26.6	53.001	142.00/	7	7.0	17.00	00 24	20.1	52.902	142.910	10	6.1
11.00	$\frac{22}{22}$	54 21	20.0 24.0	52 840	142.929	0 6	1.0	17.08	00 30	27.1 22.2	52.904 52.962	142.910	10	0.1
11.08	23	51 50	34.U	52.849	142.823	0	0.0	17.08	15 02	23.3	JZ.802	142.807	5	0.8
12.08	12	32 50 4	18.9	52.085	142.8/4	0	ð.ð	17.08	15 02	23.2	52.040	142.922	12	5.8
12.08	12	32 (20	JY.23	52.010	142.889	9	0.5	1/.08	10 43	29.1 42.6	52.982	142.904	12	0.0
12.08	1.3	20	00.4	22.008	142.880	ð	0.4	18.08	00 09	4.3.0	33.129	142./93	U	1.5

1	Габлица 3. Спи	исок землетрясений,	заре	гистрированнь	іх стані	циями ′	'Datamai	rk" на севе	ере Сахал	ина

Таблица 4. Список землетрясений, зарегистрированных станциями "Datamark" на юге Сахалина

Дата		t_0	,	Эпи	центр	h,	K _P
Д М	Ч	МИН	і сек	φ°,N	λ°,E	КМ	
1		2		3	4	5	6
08.07	18	41	43.1	47.173	142.528	2	9.0
29.08	04	29	46.8	46.694	142.391	4	6.7
29.08	07	25	06.	46.70	142.40		5.6
29.08	08	54	43.8	46.975	142.134	5	8.5
29.08	09	42	42.5	46.70	142.40		6.0
29.08	13	29	28.8	46.795	142.417	6	6.2
29.8	13	31	45	46.80	142.40		6.3
31.08	21	34	54.2	46.992	142.529	10	8.0
31.08	22	28	35.0	46.993	142.543	10	7.6
03.09	14	49	33.9	47.336	142.401	5	10.1
10.09	05	33	20	47.0	142.40		5.1

Дата	t ₀ ,		Эпи	центр	h,	K _P
Д М	Ч МИН	сек	φ°,N	λ°,E	КМ	
1	2		3	4	5	6
12.09	17 06	42	46.7	142.35		5.3
20.09	12 15	44.7	46.801	142.41	12	6.9
20.09	12 16	06.4	46.726	142.389	12	8.1
20.09	12 16	24.9	46.723	142.382	12	7.4
20.09	14 43	00.5	46.736	142.383	5	8.1
21.09	04 46	50.8	46.735	142.374	5	8.1
21.09	22 15	46.5	46.855	142.426	10	7.1
21.09	23 07	18.6	46.848	142.425	8	7.1
02.10	16 51	47.4	46.939	142.366	9	7.4
15.10	04 39	45.5	46.911	142.463	8	7.1

Рис. 1. Цифровые стации "Datamark" (WSB, MSB, WNG, FLT, MHT) и телеметрическая станция ИФЗ (H22) на севере о. Сахалин и карта эпицентров зарегистрированных ими землетрясений за период 3-18 августа 1996 г.

1 – энергетический класс К_Р; 2 – глубина гипоцентра h, км; 3, 4 – локальная и региональная сейсмическая станция, соответственно.

102

Puc. 2. Цифровые станций "Datamark" (YSS, BSK, PTP, ZLD) на юге о. Сахалин и карта эпицентров зарегистрированных ими землетрясений с 11 июня по 28 октября 1996 г.

1 – энергетический класс К_P; 2 – глубина гипоцентра h, км; 3, 4 – локальная и региональная сейсмическая станция, соответственно.

В региональный каталог [14] включены 249 землетрясений с К_С≥7.6, карта их эпицентров дана на рис. 3. Глубокофокусных землетрясений с h≥300 км произошло 10. Распределение коровых землетрясений по энергетическим классам К_С представлено в табл. 5, а распределение глубокофокусных по магнитудам MSH – в табл. 6.

N⁰	Районы	K _{min}	Кс							$\Sigma E^* 10^{12}$,
_			6	7	8	9	10	11	12	Дж
1.	Северный	7	30	236	161	43	11	-	1	117.149
2.	Охотоморский шельф	7	-	7	5	-	-	-	-	0.057
3.	Восточно-Сахалинский	7	5	1	-	-	-	-	-	0.002
4.	Западно-Сахалинский	7	4	10	12	1	2	-	-	2.230
5.	Юго-Восточный	7	1	-	-	-	-	-	-	10^{-4}
6.	Восточная часть Южного Сахалина	7	2	2	1	-	-	-	-	0.012
7.	Хабаровский приграничный	7	1	2	1	1	-	-	-	0.112
	Всего		43	258	180	45	13	-	1	120.462

Таблица 5. Распределение числа коровых землетрясений по энергетическим классам К_С и суммарная сейсмическая энергия ΣЕ по районам

ЗЕМЛЕТРЯСЕНИЯ СЕВЕРНОЙ ЕВРАЗИИ в 1996 г.

		I. I. I.			
N⁰	Район	M _{min}	M	$\Sigma E * 10^{12}$,	
			4.0	5.0	Дж
5.	Юго-Восточный	5.0	5	5	4.67

Таблица 6. Распределение числа глубоких землетрясений по магнитудам MSH и суммарная сейсмическая энергия ΣЕ в районе №5

Сейсмическая активность региона в 1996 г. по сравнению с таковой в 1995 г. [12] значительно снизилась: количество зарегистрированных землетрясений в 2.8 раза меньше прошлогоднего, хотя, в 7 раз выше, чем в 1994 г. [11]. Суммарная сейсмическая энергия меньше таковой в 1995 г., но выше энергии землетрясений в 1994 г. за счет продолжающейся последовательности афтершоков Нефтегорского землетрясения (табл. 5). Количество глубокофокусных землетрясений осталось примерно тем же, что и в [12], но магнитуды их меньше, поэтому суммарная сейсмическая энергия глубокофокусных землетрясений в 1996 г. (табл. 6) меньше таковой в 1995 г. [12]. Общее число ощутимых землетрясений в 1996 г. достаточно велико (53), причем подавляющая их часть (46) произошла в Северном районе №1 и связана, безусловно, с последействием Нефтегорского землетрясения.

Для 14 коровых землетрясений, большая часть которых является афтершоками Нефтегорского землетрясения, определены механизмы очагов [15], представленные на рис. 4.

Рис. 4. Карта механизмов очагов землетрясений Сахалина за 1996 г.

1 – энергетический класс Кс; 2-5 – характер напряженного состояния в очаге: 2, 3 – близгоризонтальное сжатие (Р) или растяжение (Т), 4 – случай равенства Р=Т, 5 – неуверенно установленное сжатие; 6 – глубинный разлом; 7 – стереограмма механизма очага в проекции на нижнюю полусферу (зачернена область сжатия). Нумерация очагов соответствует рис. 1 и каталогам [14, 15].

Северный район (№1) остался самым активным в регионе – здесь произошло 482 землетрясения (табл. 5), т.е. свыше 87% от общего числа событий, из них 46 ощущались интенсивностью от 2 до 7 баллов. Высокая сейсмическая активность наблюдалась в эпицентральной области Нефтегорского землетрясения в течение всего года (рис. 3). Для десяти афтершоков определены механизмы очагов. Очаги афтершоков 3, 10, 12, 16, 47, 64, 65 характеризуются, в основном, взбросовыми и взбросо-сдвиговыми подвижками (1 группа в табл. 7), за исключением пяти землетрясений (15, 32, 41, 52, 56), для которых оси главных напряжений поменялись местами и очаги имеют подвижку типа сброса (2 группа в табл. 7).

Таблица 7. Осредненная ориентация тектонических напряжений по данным о механизмах очагов афтершоков Нефтегорского землетрясения

Исследуемая совокупность		Ось	главных	напряже	ний		Тип подвижки
землетрясений	۲.	Г	1	V	l	P	
	PL	AZM	PL	AZM	PL	AZM	
1 группа: №№ 3, 10, 12, 16, 47, 64, 65	75	82	04	331	13	240	взброс
2 группа: №№ 15, 32, 41, 52, 56	05	83	02	352	86	240	нормальный сброс

Самое сильное землетрясение (3 на рис. 1, 4), названное Сабинским, было зарегистрировано 8 января в $10^{h}04^{m}$ на глубине h=12±2 км, его магнитуда MLH=5.7, максимальная интенсивность сотрясений достигла 7 баллов по шкале MSK-64 [16]. Подробное описание его макросейсмичекого поля дано в [17]. Для определения механизма очага Сабинского землетрясения использованы 116 знаков первых вступлений в волнах Р и P_g и, для уточнения решения, – сведения о 15 знаках и амплитудах первых смещений в волнах SV и SH на записях дальневосточных сейсмических станций. Очаг землетрясения находился под воздействием близгоризонтальных субширотных напряжений сжатия и более крутых субмеридиональных напряжений растяжения. Обе возможные плоскости разрыва имеют субмеридиональное простирание и характеризуются подвижкой типа взброса.

Два заметных афтершока Нефтегорского землетрясения произошли 30 сентября в $08^{h}44^{m}$ с K_{C} =9.7, MLH=4.2 и 7 ноября в $05^{h}27^{m}$ с K_{C} =10.1 (52 и 56 на рис. 3, 4). Оба землетрясения ощутимы, интенсивность в обоих случаях достигла 6 баллов. Для них составлены таблицы пунктов-баллов (табл. 8,9) и макросейсмические схемы (рис. 5,6).

N⁰	Пункт	Δ, км	_	N⁰	Пункт	Δ, км
	<u>6 баллов</u>		-		<u>3-4 балла</u>	
1	Сабо, пос.	24		10	Вал, пос.	66
2	Сабо, ж/д ст (Оха-Ноглики)	24		11	Москальво, пос.	79
	5 баллов			12	Некрасовка, пос.	87
3	Тунгор, пос.	50		13	Даги, ж/д ст.	90
4	Озерный, пос.	59		14	Колендо, пос.	95
	<u>4 балла</u>				<u>3 балла</u>	
5	Пильтун, пос.	22		15	Рыбновск, пос.	91
6	Пильтун, ж/д ст. (Оха-Ноглики)	32		16	Вени, пос.	111
7	Восточный, пос.	60			2-3 балла	
8	Эхаби, пос.	63		. –	<u>2-5 00,5110</u>	
9	Oxa, г.	72	_	17	Ноглики, пгт.	126

Таблица 8. Макросейсмические данные о землетрясении 30 сентября 1996 г. в 08^h44^m (K_C=9.7, MLH=4.2)

Еще два ощутимых толчка зарегистрированы 7 ноября в $05^{h} 49^{m}$ с K_{c} =9.6 и в $07^{h} 11^{m}$ с K_{c} =8.7 (57, 58 на рис. 3), интенсивность составила 4 и 2-3 балла, соответственно [14]. Северо-западнее мыса Марии зарегистрировано землетрясение 23 марта в $02^{h} 39^{m}$ с K_{c} =9.0, MLH=3.5 (32 на рис. 3, 4). В Сахалинском заливе можно отметить два землетрясения, происшедшие 1 июля в $01^{h} 06^{m}$ с K_{c} =9.3 и 2 июля в $12^{h} 06^{m}$ с K_{c} =8.6 (43, 44 на рис. 3 4). Очаг землетрясения 1 июля (43 на рис. 3, 4) находился под воздействием близгоризонтальных напряжений растяжения и более крутых напряжений сжатия, что определило подвижку типа сброса.

Рис. 5. Макросейсмическая схема землетрясения 30 сентября в $08^{h}44^{m}$ (K_C=9.7, MLH=4.2)

Таблица 9. Макросейсмические данные о землетрясении 7 ноября 1996 г. в 05^h27^m (К_с=10.1, MLH=4.9)

6 баллов 9 Восточный, пос. 9 1 Пильтун, пос. 24 10 Эхаби, пос. 9 2 Пильтун, ж/д ст. (Оха-Ноглики) 24 11 Оха, г. 10 3 Паромай, ж/д ст. 31 12 Горячие Ключи 7 3 Паромай, ж/д ст. 31 12 Горячие Ключи 7 4 Вал, пос. 38 14 Ноглики, пгт. 9 4 Вал, пос. 38 15 Москальво, пос. 10 5 Сабо, пос 57 16 Катангли, пос. 10 7 Тунгор, пос. 85 2-3 балла 14	N⁰	Пункт	Δ, км	-	N⁰	Пункт	Δ, км
<u>3-4 балла</u> 8 Озерини пос 91	1 2 3 4 5 6 7 8	<u>6 баллов</u> Пильтун, пос. Пильтун, ж/д ст. (Оха-Ноглики) <u>5 баллов</u> Паромай, ж/д ст. <u>4 балла</u> Вал, пос. Сабо, пос Даги, пос. Тунгор, пос. <u>3-4 балла</u> Озерный пос	24 24 31 38 57 59 85		9 10 11 12 13 14 15 16 17	Восточный, пос. Эхаби, пос. Оха, г. <u>З балла</u> Горячие Ключи Вени, пос. Ноглики, пгт. Москальво, пос. Катангли, пос. <u>2-3 балла</u> Николаевск-на-Амуре, г.	92 97 106 70 81 96 105 107 148

В Охотоморском шельфе (\mathbb{N}_2) в течение года произошло всего 12 землетрясений (табл. 5), сосредоточенных, главным образом, вдоль береговой линии острова (рис. 3). Энергетический класс не превышал K_c =8.4.

В Восточно-Сахалинском районе (\mathbb{N} 3) наблюдалось сейсмическое затишье, зарегистрировано несколько слабых одиночных толчков с $K_C < 7.6$ (табл. 5), поэтому ни один из них не попал в каталог[14].

В Западно-Сахалинском районе (№4) зарегистрировано 29 землетрясений (табл. 5), 6 из которых – ощутимы. Максимальная интенсивность 4 балла отмечена в пос. Бошняково и Лесогорск [14]. Наиболее заметные землетрясения района произошли 17 января в $01^{h}38^{m}$ с K_{C} =8.9, 29 мая в $19^{h}43^{m}$ с K_{C} =8.9 и 14 декабря в $11^{h}51^{m}$ с K_{C} =9.8 (20, 38, 63 на рис. 1), последнее ощущалось с интенсивностью 2-3 балла в г. Углегорске и г. Шахтерске [14]. Для землетрясения 17 января удалось определить механизм очага [15]. Землетрясение произошло в условиях близгоризонтально ориентированного напряжения сжатия и более крутого напряжения растяжения. Одна из возможных

плоскостей разрыва ориентирована субмеридионально, другая – вкрест простирания островных структур. Тип подвижки – пологий надвиг.

Рис. 6. Макросейсмическая схема землетрясения 7 ноября в 05^h27^m (K_C=10.1, MLH=4.9)

На юге Юго-Восточного района (№5) (в заливе Анива) отмечены глубокофокусные землетрясения с h=325÷400 км (19, 37, 45, 46, 50, 53, 55, 59, 61, 62 на рис. 3) с MSH≤5.0, а на севере района (в заливе Терпения) наблюдалось сейсмическое затишье.

В Восточной части Южного Сахалина (№6) на протяжении трех предшествующих лет [11,12,18] наблюдалось сейсмическое затишье. Но в 1996 г. здесь зарегистрировано несколько землетрясений с K_c =6.0÷8.5 (табл. 5), из них одно – ощутимое. Оно произошло 13 ноября в 20^h12^m с K_c =8.4 и проявилось с интенсивностью 2 балла в пос. Синегорск (Δ =17 км) [14].

Сейсмическая активность в Хабаровском приграничном районе (№7) в 1996 г. невысока (рис. 3, табл. 5). Самое сильное (K_C =9.0) землетрясение зарегистрировано 1 июня в $12^{h}42^{m}$ (38 на рис. 1), его эпицентр находился в Охотском море.

В целом, в 1996 г. на Сахалине наблюдалась высокая сейсмическая активность.

Литература

- 1. Шолохова А.А., Коваленко Н.С., Паршина И.А., Рудик М.И., Бобков А.О. Приамурье и Приморье. См. раздел I (Обзор сейсмичности) в наст. сб.
- 2. Фокина Т.А., Давыдова Н.А., Рудик М.И., Бобков А.О., Брагина Г.И. Курило-Охотский регион. См. раздел I (Обзор сейсмичности) в наст. сб.
- 3. Сейсмологический бюллетень (ежедекадный) за 1996 год. 1996-1997. / Отв. ред. О.Е. Старовойт. Обнинск: Изд-во ОМЭ ИФЗ РАН.
- 4. Bulletin of the International Seismological Centre (for 1996). 1998-1999. Ньюбери: Изд-во ISC.
- 5. Поплавская Л.Н., Бобков А.О., Кузнецова В.Н., Нагорных Т.В., Рудик М.И. 1989. Принципы формирования и состав алгоритмического обеспечения регионального центра обработки сейсмологических наблюдений (на примере Дальнего Востока) // Сейсмологические наблюдения на Дальнем Востоке СССР. (Методические работы ЕССН). М.: Наука. С. 32-51.
- Оскорбин Л.С., Бобков А.О. 1997. Сейсмический режим сейсмогенных зон юга Дальнего Востока // Геодинамика тектоносферы зоны сочленения Тихого океана с Евразией. Т.VI. (Проблемы сейсмической опасности Дальневосточного региона). Южно-Сахалинск: Изд-во ИМГиГ. С. 179-197.
- 7. Балакина Л.М., Введенская А.В., Голубева Н.В., Мишарина Л.А., Широкова Е.И. 1972. Поле упругих напряжений Земли и механизм очагов землетрясений. М.: Наука. 192 с.

- 8. Аптекман Ж.Я., Желанкина Т.С., Кейлис-Борок В.И., Писаренко В.Ф., Поплавская Л.Н., Рудик М.И., Соловьев С.Л. 1979. Массовое определение механизмов очагов землетрясений на ЭВМ // Теория и анализ сейсмологических наблюдений. М.: Наука. С. 45-58. (Вычислительная сейсмология; Вып12).
- Поплавская Л.Н., Нагорных Т.В., Рудик М.И. 2001. Методика и первые результаты массовых определений механизмов очагов коровых землетрясений Дальнего Востока // Землетрясения Северной Евразии в 1995 году. М.: Изд-во ОИФЗ РАН. С. 95-99.
- 10. Волкова Л.Ф., Поплавская Л.Н., Соловьева О.Н. 1989. Шкалы MPVA, MSHA для определения магнитуд близких глубокофокусных землетрясений Дальнего Востока // Сейсмологические наблюдения на Дальнем Востоке СССР. (Методические работы ЕССН). М.: Наука. С. 81-85.
- 11. Шолохова А.А., Рудик М.И., Паршина И.А., Бобков А.О. 2000. Сахалин / Землетрясения Северной Евразии в 1994 году. М.: Изд-во ОИФЗ РАН. С. 84-87.
- 12. Фокина Т.А., Поплавская Л.Н., Паршина И.А., Рудик М.И., Бобков А.О. 2001. Сахалин // Землетрясения Северной Евразии в 1995 году. М.: Изд-во ОИФЗ РАН. С. 79-86.
- Оскорбин Л.С., Поплавский А.А., Стрельцов М.И., Шолохова А.А., Давыдова Н.А., Койкова Л.Ф., Садчикова А.А., Хритова Л.И. 2001. Нефтегорское землетрясение 27(28) мая 1995 года (Mw=7.1) / Землетрясения Северной Евразии в 1995 году. М.: Изд-во ОИФЗ РАН. С. 170-182.
- 14. Фокина Т.А., Шолохова А.А. (отв. сост.), Паршина И.А., Садчикова А.А., Величко Л.Ф. Сахалин. См. раздел III (Каталоги землетрясений) в наст. сб.
- 15. Рудик М.И. (отв. сост.), Паршина И.А., Нагорных Т.В. Сахалин. См. раздел IV (Каталоги механизмов очагов землетрясений) в наст. сб.
- 16. Медведев С.В. (Москва), Шпонхойер В. (Иена), Карник В. (Прага). 1965. Шкала сейсмической интенсивности MSK-64. М.: Изд-во МГК АН СССР. 11 с.
- 17. Оскорбин Л.С., Шолохова А.А., Садчикова А.А., Паршина И.А. Сабинское землетрясение 8 января 1996 года, *MLH*=5.7, *I*₀=7 (*Сахалин*). См. раздел II (Макросейсмические обследования) в наст. сб.
- 18. Шолохова А.А., Рудик М.И. 1999. Землетрясения Сахалина // Землетрясения Северной Евразии в 1993 году. М.: Изд-во НИА-Природа. С. 87-90.