КУРИЛО-ОХОТСКИЙ РЕГИОН

Т.А. Фокина, Н.А. Давыдова, М.И. Рудик, А.О. Бобков, Г.И. Брагина

С начала 1996 г. на территории Курильских островов функционировали три сейсмические станции Сахалинской опытно-методической сейсмологической партии (СОМСП): "Курильск", "Северо-Курильск" и "Шикотан", а с 3 августа была восстановлена сейсмическая станция "Южно-Курильск" (табл. 1).

Таблица 1. Сейсмические станции Курило-Охотского региона, работавшие в 1996 г., и их параметры

№	№ Станция		Да	Координаты			Аппаратура				
	Название	Код	открытия	закрытия	φ°, N	λ°, Ε	h,	Тип	Компо-	V _{max} /	ΔT_{max} ,
				_			М	прибора	нента	чувствит-сть	с
1	2	3	4	5	6	7	8	9	10	11	12
1	Северо-Курильск	SKR	01.03.1958		50.67	156.11	22	СКМ-3	N,E,Z	20000	0.36-0.65
									N,E,Z	10000	0.36-0.65
									N,E,Z	5000	0.36-0.65
								СКД	N,E,Z	1000	0.20-20.0
									N,E,Z	500	0.20-18.0
									N,E,Z	200	0.20-16.0
								СКД-КПЧ	N,E,Z	50	0.2-19.0
								C-5-B	N,E,Z	10.0 c	0.045-4.6
									N,E,Z	1.0 c	0.085-4.6
								ОСП	N,E,Z	$0.04 c^2$	0.020-2.0
								CCP3	Ν	$0.0018 c^2$	0.5-18.0
									E	$0.0019 c^2$	3.0-20.0
									Ζ	$0.0021 c^2$	0.5-20.0
								C-5-C	N,E,Z	25.0	0.011-0.11
									N,E,Z	1.0	0.011-0.11
								УБП	N,E	33.0	1.0-3.0
								CMP	N,E	7.0	2.0-5.0
								CMP-0	Ν	1.0	1.5-3.5
								СБМ		1.1	0.23-0.27
2	Курильск	KUR	01.01.1950		45.23	147.87	40	CKM-3	N,E,Z	20000	0.37-0.68
									N,E,Z	10000	0.37-0.68
									N,E,Z	5000	0.37-0.68
								СКД	N,E,Z	1000	0.20-20.0
									N,E,Z	500	0.20-17.0
									N,E,Z	200	0.20-15.0
								КПЧ	N,E,Z	20	0.20-15.0
								С-5-В	N,Z	10.0	0.053-4.6
								С-5-В	N	1.0	0.045-4.6
									Z	1.0	0.044-4.6
								0.077	E	1.0	0.047-4.6
								OCH	N	$0.045 c^2$	0.015-1.1
									E	$0.045 c^2$	0.014-1.1
								CCDD	Z	$0.045 c^2$	0.013-2.2
								ССРЗ	N	$0.00208 c^2$	0.054-11.0
									E	$0.00221 c^2$	0.052-11.0
									Z	$0.00237 c^2$	0.0/3-10.4
								УБП2	N,E	36.0	1.7-3.9
								CMTP	N,E	6.86	2.2-4.9

N⁰	станция		Дата			ординал	гы	Аппаратура			
	Название	Код	открытия	закрытия	φ°, N	λ°, E	h,	Тип	Компо-	V _{max} /	ΔT_{max} ,
			-	-	1 /	· · ·	Μ	прибора	нента	чувствит-сть	с
1	2	3	4	5	6	7	8	9	10	11	12
								CMP	Е	1.0	1.3-2.9
								CM	Ν	25.0	0.015-0.11
									E	25.0	0.016-0.11
									Ν	1.0	0.014-0.11
									E	1.0	0.016-0.11
									Ζ	1.0	0.018-0.11
								СБМ		1.1	0.19-0.30
3	Шикотан	SHO	01.11.1958		43.87	146.83	55	CKM-3	N,E,Z	40000	0.32-0.63
									N,E,Z	20000	0.17-0.62
									N,E,Z	10000	0.14-0.61
								C5B	N,E,Z	5.0 c	0.085-4.6
									N,E,Z	0.5 c	0.017-4.6
								ОСП	Ν	$0.04 c^2$	0.028-2.1
									E	$0.04 c^2$	0.028-2.1
									Ζ	$0.04 c^2$	0.03-1.1
									Ν	$0.005 c^2$	0.028-2.1
									E	$0.005c^2$	0.028-2.1
								CCP3	Ν	$0.00205 c^2$	0.015-10.0
									E	$0.00211 c^2$	0.015-10.0
									Ζ	$0.00210 c^2$	0.015-10.0
								C5C	N,E,Z	200.0	0.014-0.03
									N,E,Z	20.0	0.014-0.03
									N,E,Z	2.0	0.014-0.02
								СБМ		1.1	0.19-0.30
4	Южно-Курильск	YUK	01.10.1960	08.11.1995	44.03	145.86	28	CKM-3	N,E,Z	10000	0.22-0.5
			03.08.1996						N,E,Z	5000	0.22-0.5
									N,E,Z	2500	0.22-0.5

Для определения параметров землетрясений региона привлекались данные сейсмических станций Приамурья, Сахалина и бюллетени ОМЭ ОИФЗ РАН [1], JMA, ISC [2]. Методика обработки землетрясений и схема деления региона на отдельные сейсмоактивные районы остались без изменений [3-12]. Всего в 1996 г. определены параметры 820 землетрясений с MLH≥4.0 (K_c ≥9). Карта их эпицентров представлена на рис. 1, каталог дан в [13]. Свыше 82% землетрясений отмечено на глубине h=0-80 км, при этом максимум землетрясений зарегистрирован в слое h=31-40 км (N=201) (табл. 2).

Таблица 2. Распределение землетрясений Курило-Охотского региона по интервалам глубины гипоцентра

h, км	Ν	h, км	Ν	h, км	Ν	h, км	Ν
1 - 10	2	151 - 160	6	301 - 310	0	451 - 460	2
11 - 20	13	161 - 170	4	311 - 320	0	461 - 470	0
21 - 30	188	171 - 180	2	321 - 330	1	471 - 480	1
31 - 40	201	181 - 190	1	331 - 340	0	481 - 490	3
41 - 50	110	191 - 200	2	341 - 350	2	491 - 500	0
51 - 60	88	201 - 210	1	351 - 360	0	501 - 510	0
61 - 70	42	211 - 220	2	361 - 370	2	511 - 520	3
71 - 80	33	221 - 230	1	371 - 380	1	521 - 530	2
81 - 90	14	231 - 240	2	381 - 390	0	531 - 540	0
91 - 100	11	241 - 250	2	391 - 400	6	541 - 550	1
101 - 110	16	251 - 260	0	401 - 410	0	551 - 560	0
111 - 120	13	261 - 270	1	411 - 420	2	561 - 570	0
121 - 130	12	271 - 280	2	421 - 430	1	571 - 580	0
131 - 140	12	281 - 290	1	431 - 440	0	581 - 590	1
141 - 150	7	291 - 300	1	441 - 450	2	591 - 630	1

Рис. 1. Карта эпицентров землетрясений Курило-Охотского региона за 1996 г.

1 – магнитуда MLH (h≤80 км), MSH (h>80 км); 2 – глубина h гипоцентра, км; 3 – сейсмическая станция; 4,5 – граница и номер района. Изолиния на уровне h=–7000 м оконтуривает ось глубоководного Курило-Камчатского желоба, а h=–5000 м соответствует контуру глубоководной Курильской котловины. Номера землетрясений поставлены против сгущений эпицентров, к которым они относятся.

Суммарная сейсмическая энергия, выделившаяся в очагах землетрясений в 1996 г., почти в 3 раза меньше таковой в 1995 г. [14]. Распределение землетрясений по магнитудам и сейсмическая энергия по районам дано в табл. 4, наибольшее количество энергии высвободилось в Симушир-

Урупском районе (табл. 3) благодаря сильнейшему землетрясению года 7 февраля в 21^h36^m с MLH=7.2 (15 на рис. 1). Оно сопровождалось незначительной серией афтершоков и ощущалось на Южных и Средних Курильских островах с максимальной интенсивностью 5 баллов. Всего в регионе отмечено 98 ощутимых землетрясений [13].

h≤80 км											
N⁰	Район		MLH								
		4.0	4.5	5.0	5.5	6.0	6.5	7.2	Дж		
1	Парамуширский	32	18	2	1	-	-	-	0.09		
2	Онекотан-Матуанский	35	12	1	1	1	-	-	1.2		
3	Симушир-Урупский	52	56	16	3	-	-	1	400.0		
4	Северо-Итурупский	127	79	12	4	2	-	-	5.7		
5	Кунашир-Шикотанский	141	50	4	3	1	1	-	12.0		
6	О. Хоккайдо	9	7	1	-	-	-	-	0.024		
7	Японское море	1	1	-	-	-	-	-	0.002		
8	Охотское море	2	-	-	-	-	-	-	0.0002		
	Всего	399	223	36	12	4	1	1	420.00		

Таблица 3. Распределение числа землетрясений по магнитуде MLH и MSH и суммарная сейсмическая энергия ΣЕ по районам

h>80 км

N₂	Район		$\Sigma E * 10^{13}$,						
_		4.0	4.5	5.0	5.5	6.0	6.5	7.0	Дж
1	Парамуширский	1	-	1	8	-	-	-	0.28
2	Онекотан-Матуанский	-	1	5	6	3	-	-	0.79
3	Симушир-Урупский	-	2	6	12	5	2	-	10.57
4	Северо-Итурупский	-	2	1	6	1	-	1	204.29
5	Кунашир-Шикотанский	-	1	6	9	-	2	-	12.41
6	О. Хоккайдо	-	2	9	12	-	-	-	0.37
7	Японское море	2	1	3	1	1	-	1	203.09
8	Охотское море	3	9	11	5	3	-	-	1.12
	Всего	6	18	42	59	13	4	2	432.92

Примечание. При составлении таблицы величина всех землетрясений приводилась к магнитуде MLH путем пересчета из классов Кс для землетрясений с глубиной не больше 80 км и из магнитуд MSH с h≥80 км по следующим соотношениям: MLH=(Kc-1.2)/2 и MLH=(MSH-1.71)/0.75. Для второго соотношения вводилась поправка за глубину очага.

Определены механизмы очагов 81 землетрясения с MLH≥4.2 [15], 55 из них произошли на глубине h≤80 км, 18 – на глубине h=81-300 км и 8 – на глубине h>300 км. Пространственное распределение землетрясений с известным механизмом очага дано на рис. 2, развитие сейсмического процесса во времени – на рис. 3. Ниже приведено описание годовой сейсмичности [13] и механизмов очагов [15] по районам.

В Парамуширском районе (№1) свыше 58% всех гипоцентров расположено на глубине h=30-40 км. Сильнейшее землетрясение района (72 на рис. 1, 2) зарегистрировано 13 ноября в $05^{h}03^{m}$ с MLH=4.9, K_C=11, h=35±3 км (pP-P). Определены механизмы очагов четырех землетрясений, три из которых (22, 53, 72 на рис. 1, 2) произошли на глубине h=31-80 км, а одно (57 на рис. 1, 2) – на глубине h=115±7 км. Характер сейсмодислокаций в первом глубинном интервале (h=31-80 км) – взрезы и пологие надвиги, что соответствует ситуации, когда главные оси Р и Т действующих напряжений ориентированы относительно горизонта под одинаковыми или близкими углами. Во втором интервале глубин (h=81-300 км) отмечен взброс для единственного события с известным механизмом очага. Ход сейсмического процесса в Парамуширском районе был неравномерным, в начале и конце года наблюдалось сейсмическое затишье (рис. 3). В Онекотан-Матуанском районе (№2) 52% землетрясений зарегистрировано на глубине h=30-40 км. Наиболее сильное землетрясение района (43 на рис. 1, 2) произошло 3 июня в $19^{h}55^{m}$ с MLH=5.9, $K_{C}=12$, $h=33\pm3$ км (pP-P). В шельфовой зоне островов зарегистрировано 14 землетрясений с глубиной очага h=105-205 км, сильнейшее из них (6 на рис. 1, 2) произошло 12 января в $04^{h}41^{m}$ с MSH=5.8, $h=145\pm5$ км в условиях близгоризонтального напряжения растяжения, с преобладанием сдвиговой компоненты подвижки в очаге. Определены механизмы очагов еще 7 землетрясений, 4 из которых произошли в интервале глубин h=31-80 км, а 3 – в интервале h=81-300. Для глубины h=31-80 км характерны взбросы, реже – пологие надвиги, кроме того, отмечен один очаг с MLH=4.2 (52 на рис. 1), находившийся в условиях близгоризонтального растяжения, со сдвиговой подвижкой. Очаги более глубоких и сильных (MSH=5.5-6.0) сейсмических событий характеризовались сдвиговыми дислокациями. Описываемый район, так же, как и Парамуширский, был малоактивным. Сейсмический процесс развивался неравномерно: первая половина года была более активна, особенно июнь. В ноябре наблюдалось сейсмическое затишье (рис. 3).

Рис. 2. Карта механизмов очагов землетрясений Курило-Охотского региона за 1996 г.

1 – магнитуда MLH (h≤80 км), MSH (h>80 км); 2 – глубина h гипоцентра, км; 3 – сейсмическая станция; 4 – граница района; 5 – номер района; 6 – ось глубоководного Курило-Камчатского желоба; 7 – стереограмма механизма очага в проекции на нижнюю полусферу, зачернены области сжатия (в районах №2-5 на карту вынесены стереограммы механизмов очагов землетрясений только с М≥5.5).

Рис. 3. Моменты возникновения землетрясений в районах №1-8 в течение года

В Симушир-Урупском районе (№3) 45% общего числа землетрясений произошло на глубине h=30-40 км. Определены механизмы очагов 24 землетрясений: два из них расположены на глубине h=0-30 км, 15 – в интервале h=31-80 км, 7 – h=81-300 км. Как и в 1995 году [14], наибольшая сейсмическая активность наблюдалась восточнее о. Уруп, где выделяются 2 группы землетрясений в диапазоне глубин h=30-80 км. Их эпицентры расположились восточнее очага землетрясения (15 на

рис. 1, 2) 7 февраля в 21^h36^m на глубине h=47±4 км с MLH=7.2. Это – сильнейшее землетрясение года во всем регионе. Оно предварялось форшоком на глубине h=55±5 км с MLH=5.0 (4 на рис. 1) и сопровождалось незначительной серией афтершоков, для пяти из которых определен механизм очагов (17, 44, 50 на рис. 1; 19, 65 на рис. 1, 2). Интерпретация механизма очага главного толчка, его форшока и афтершоков [15] позволяет установить, что очаги находились под воздействием близгоризонтально ориентированных напряжений сжатия и более крутых напряжений растяжения. Ось промежуточного напряжения близгоризонтальна. Одна из возможных плоскостей разрыва ориентирована вдоль простирания островной дуги и круто падает к юго-востоку. Подвижка по разрыву – взбросо-сдвиг, юго-восточное крыло разрыва смещено относительно северо-западного к северо-востоку и вверх. Другая возможная плоскость разрыва имеет субширотное простирание с падением под небольшим углом на северо-запад, при этом северо-западное крыло разрыва смещено вверх и к юго-западу. Характер подвижки – взброс. Система напряжений, действовавшая в обеих группах землетрясений, характеризуется преобладающим близгоризонтальным растяжением. Характерные сейсмодислокации – сбросы, взрезы. В шельфовой области островов Симушир и Уруп 15% всех сейсмических событий отмечено на глубине h=93-200 км, характерным для них являются подвижки типа взброса, сдвига, пологого надвига (9, 20, 78, на рис. 1; 56, 73, 79, 81 на рис. 1, 2). Сейсмический процесс во времени протекал достаточно равномерно (рис. 3).

В Северо-Итурупском районе (№4) 46% всех землетрясений отмечено на глубине h=30-40 км. Наибольшая часть эпицентров расположилась вокруг группы сильных (MLH=5.5-6.2) землетрясений. Самое сильное землетрясение района (11 на рис. 1, 2) зарегистрировано 31 января в 20^h30^m с MLH=6.2, h=51±7 км, ему предшествовало два форшока: 27 января в 21^h48^m с MLH=4.1, К_с=10.5, h=51±5 км и более сильный – 31 января в 19^h21^m с MLH=5.7, h=54±5 км, для которого определен механизм очага (10 на рис. 2). Афтершоки главного толчка продолжались почти полгода, их гипоцентры расположились в диапазоне глубин h=28-54 км, магнитуды – в диапазоне MLH=3.9-5.5. Определены механизмы очагов 23 землетрясений, гипоцентры 21 из них находились на глубине h=0-80 км, а остальные два – на глубине h=81-300 км. Полученные результаты свидетельствуют о том, что в очаге форшока и главного толчка произошел сдвиг с незначительной взбросовой компонентой по падению плоскостей, одна из которых имеет северо-восточное простирание и крутое падение, другая – северо-западное простирание. Оси напряжений сжатия и растяжения находились в равных условиях (с равными наклонами к горизонту). Очаговая область афтершоков (16, 28, 30, 31, 32, 34 на рис. 1; 26, 27, 29 на рис. 1, 2) характеризуется близгоризонтальным напряжением сжатия и близвертикальным напряжением растяжения. Преобладающий характер подвижки – взброс, за исключением землетрясений 27 и 32, для которых характерна подвижка типа сдвига. В очагах землетрясений (1, 5, 7, 8, 45, 59, 64, 68, 76 на рис. 1), отмеченных на глубине h=31-80 км, наблюдались, в основном, подвижки типа взброса, сдвиго-надвига благодаря преобладанию близгоризонтального напряжения сжатия, ориентированного для большинства очагов вкрест простирания геологических структур. Соответствующее ему напряжение растяжения направлено круто относительно горизонта. Из 13 глубокофокусных землетрясений (h>300 км) сильнейшее (21 на рис. 1, 2) произошло 22 февраля в 14^h59^m с MSH=7.0, h=133±5 км с максимальным макросейсмическим эффектом 4 балла на о. Шикотан [13]. Для него и другого глубокого землетрясения (46 на рис. 1, 2) определены механизмы очагов с подвижками типа пологого надвига и сдвига, соответственно. Сейсмический процесс развивался неравномерно (рис. 3), относительно высокая сейсмическая активность наблюдалась в первой половине года.

В Кунашир-Шикотанском районе (№5) значительная сейсмическая активность была отмечена юго-восточнее о. Шикотан, где продолжался афтершоковый процесс Шикотанского катастрофического землетрясения, происшедшего 04.10.1994 г. [16]. Отмечено два сильных события (24, 37 на рис. 1, 2): 9 марта в 16^h15^m с MLH=6.4, h=41±3 км и 7 мая в 23^h20^m с MLH=6.0, h=54±5 км. Макросейсмический эффект достигал 5 баллов на Южных Курильских островах [13]. Определены механизмы очагов для 13 землетрясений, 11 из них произошли на глубине h=31-80 км, два – на глубине h=81-300 км. Напряженное состояние всех очагов, как и главного толчка Шикотанского землетрясения, его форшоков и афтершоков, характеризуется близгоризонтальным сжатием и более крутым растяжением. Преобладающий тип подвижки – взброс и сдвиго-надвиг в верхнем интервале глубин; сдвиг, сбросо-сдвиг – в нижнем.

В районе острова Хоккайдо (№6) свыше 57% землетрясений являются глубокофокусными с h=81-248 км. Сейсмическая активность в районе (рис. 3) по сравнению с таковой в 1995 г. [14] снизилась. Зарегистрировано три толчка с $K_c=11$, первый из которых (23 на рис. 1, 2) произошел 29 февраля в $09^{h}01^{m}$ на глубине $h=115\pm20$ км. Его очаг находился под действием близгоризонтального сжатия, ориентированного субширотно, подвижка имела характер взброса. Второй толчок произошел 14 апреля в 21^{h} 44^{m} на глубине $h=79\pm3$ км, макросейсмические сведения о нем поступили из населенных пунктов Японии, интенсивность сотрясений достигла 5 баллов [13]. Третий из упомянутых толчков отмечен 27 сентября в $23^{h}07^{m}$ на глубине $h=63\pm5$ км. Сейсмический процесс в районе (рис. 3) развивался почти равномерно в течение года.

Район Японского моря (№7), как и в 1995 г. [14], характеризовался слабой сейсмической активностью. Отмечено 9 глубоких (h=220-300 км) и 2 мелкофокусных (h=26, 33 км) землетрясения. Эпицентр самого сильного толчка (80 на рис. 1, 2) 22 декабря в 14^h53^m с h=227±5 км, MSH=7.0 находился в 120 км западнее о. Хоккайдо. В очаге этого землетрясения имела место сбросо-сдвиговая подвижка под воздействием близгоризонтального напряжения растяжения (рис. 2). Сейсмический процесс развивался неравномерно, с января по август отмечено только два землетрясения (рис. 3), все остальные – позже.

В районе **Охотского моря (№8)** гипоцентры глубокофокусных землетрясений отмечены на глубине h=330-624 км. Резко активизировалась сейсмичность северной части Охотского моря. Сильный толчок (58 на рис. 1, 2) отмечен 30 августа в $21^{h}13^{m}$ на глубине h=587±9 км с MSH=6.1, глубокофокусные землетрясения с MSH=5.8 – 10 июля в $06^{h} 25^{m}$ (h=525±25 км) и 8 октября в $07^{h} 52^{m}$ (h=624±12 км). Их очаги находились под воздействием близгоризонтальных растягивающих напряжений. Характер подвижек – сброс. В двух очагах (38, 74 на рис. 1, 2) юго-западной части Охотского моря отмечались взбросо-сдвиги. Ход сейсмического процесса в течение года был неравномерным (рис. 3).

Анализируя данные каталога основных параметров [13] в целом по региону, хочется отметить, что все проявления сейсмичности приурочены к уже известным сейсмическим зонам Охотского и Японского морей, к сейсмическому поясу Курильских островов и о. Хоккайдо. Сравнительный анализ последних двух лет показывает постепенное снижение сейсмической активности региона за счет уменьшения числа афтершоков Шикотанского землетрясения. Согласно каталогу механизмов очагов [15] напряженное состояние среды на глубине h=0-30 км и h=31-80 км характеризуется близгоризонтальными напряжениями сжатия и более крутыми растягивающими напряжениями, преобладают дислокации типа взбросов и пологих надвигов (табл. 4). На глубине h=81-300 км равномерно представлены сдвиги, сбросы, взбросы и пологие надвиги. Для глубоких очагов Охотского моря (h>300 км) наиболее представительный тип сейсмодислокаций – сброс.

Дислокации	Интервал глубин, км								
	0-30	31-80	81-300	>300					
взброс	38%	36%	24%	25%					
сброс	12%	07%	24%	50%					
сдвиг	13%	19%	29%	-					
пологий надвиг	25%	25%	23%	12%					
взрез	12%	13%	-	13%					

Таблица 4. Процентное соотношение типов дислокаций в Курило-Охотском регионе в 1996 г.

Литература

- 1. Сейсмологический бюллетень (ежедекадный) за 1996 год. 1996-1997. / Отв. ред. О.Е. Старовойт. Обнинск: Изд-во ОМЭ ИФЗ РАН.
- 2. Bulletin of the International Seismological Centre (for 1996). 1998-1999. Ньюбери: Изд-во ISC.
- 3. Поплавская Л.Н., Бобков А.О., Кузнецова В.Н., Нагорных Т.В., Рудик М.И. 1989. Принципы формирования и состав алгоритмического обеспечения регионального центра обработки сейсмологических наблюдений (на примере Дальнего Востока) // Сейсмологические наблюдения на Дальнем Востоке СССР. (Методические работы ЕССН). М.: Наука. С. 32-51.

- 4. Миталева Н.А., Бойчук А.Н. 1988. Землетрясения Курило-Охотского региона // Землетрясения в СССР в 1985 году. М.: Наука. С. 144-154.
- 5. Поплавская Л.Н., Миталева Н.А., Бобков А.О., Бойчук А.Н., Рудик М.И. 1996. Землетрясения Курило-Охотского региона // Землетрясения в СССР в 1990 году. М.: Наука. С. 91-100.
- 6. Аптекман Ж.Я., Желанкина Т.С., Кейлис-Борок В.И., Писаренко В.Ф., Поплавская Л.Н., Рудик М.И., Соловьёв С.Л. 1979. Массовое определение механизмов очагов землетрясений на ЭВМ // Теория и анализ сейсмологических наблюдений. М.: Наука. С. 45-58. (Вычислительная сейсмология; Вып. 12).
- Тараканов Р.З., Ким Чун Ун, Сухомлинова Р.И. 1977. Закономерности пространственного распределения гипоцентров Курило-Камчатского и Японского регионов и их связь с особенностями геофизических полей // Геофизические исследования зоны перехода от Азиатского континента к Тихому океану. М.: Наука. С. 67-75.
- 8. Соловьёв С.Л., Соловьёва О.Н. 1967. Соотношение между энергетическим классом и магнитудой курильских землетрясений. Физика Земли. №2. С. 13-23.
- 9. Соловьёва О.Н., Соловьёв С.Л. 1968. Новые данные о динамике сейсмических волн неглубокофокусных Курило-Камчатских землетрясений // Проблемы цунами. М.: Наука. С. 75-97.
- 10. Вермишева Л.Ю., Гангнус А.А. 1977. Применение типизации подвижек в очагах землетрясений для решения сейсмотектонических задач // Физика Земли. №3. С. 103-109.
- 11. Балакина Л.М., Введенская А.В., Голубева Н.В., Мишарина Л.А., Широкова Е.И. 1972. Поле упругих напряжений Земли и механизм очагов землетрясений. М.: Наука. 192 с.
- 12. Давыдова Н.А., Рудик М.И., Бобков А.О. 2000. / Землетрясения Северной Евразии в 1994 году. М.: Изд-во ОИФЗ РАН. С. 88-95.
- 13. Поплавская Л.Н., Фокина Т.А., Давыдова Н.А. (отв. сост.), Брагина Г.И., Пиневич М.В., Паршина И.А., Коваленко Н.С., Левит Е.В. Курило-Охотский регион. См. раздел III (Каталоги землетрясений) в наст. сб.
- 14. Давыдова Н.А., Рудик М.И., Бобков А.О., Фокина Т.А. 2001. Курило-Охотский регион // Землетрясения Северной Евразии в 1995 году. М.: Изд-во ОИФЗ РАН. С. 87-94.
- 15. Рудик М.И. (отв. сост.). Курило-Охотский регион. См. раздел IV (Каталоги механизмов очагов землетрясений) в наст. сб.
- 16. Оскорбин Л.С., Бобков А.О., Спирин А.И., Усышкин И.Е., Шишкин А.А., Шолохова А.А., Давыдова Н.А., Поплавский А.А., Садчикова А.А. 2000. Шикотанское землетрясение 4(5) октября 1994 года // Землетрясения Северной Евразии в 1994 году. М.: Изд-во ОИФЗ РАН. С. 163-174.