Южно-Муйское землетрясение 13 ноября 1995 года (MS=6.1)

С.И. Голенецкий

13 ноября в $08^{h}43^{m}$ между реками Муя и Мудирикан (рис. 1), в районе юго-западного окончания Муйской впадины на северо-восточном фланге Байкальской рифтовой зоны произошло сильное землетрясение с K_P=15 [1], MS=6.1, M₀=6.4*10¹⁸ H·м (KIV) [2], Mw=5.8(HRV) [3].

Основные параметры землетрясения. Результаты определения основных параметров землетрясения по данным различных сейсмологических центров представлены на рис. 1 и в табл. 1. Согласно [3] это землетрясение зарегистрировали 607 станций по всему земному шару. Согласие в местоположении эпицентра по данным ряда центров обработки сейсмологических наблюдений (1-4 на рис. 1) вполне удовлетворительное. В наиболее полной степени наблюдения на меньших эпицентральных расстояниях использовались в региональных расчетах эпицентра, тогда как в других случаях эти данные отсутствовали. Однако региональные оценки глубины гипоцентра из-за отсутствия станций на расстояниях, сравнимых с глубиной, не могли обладать приемлемой точностью. Очевидно, наиболее надежная оценка глубины гипоцентра (~21 км) дана в [3], так как основывается на многочисленных (n=79) наблюдениях волн типа pP, отраженных от дневной поверхности. Следует отметить общую согласованность определений глубины гипоцентра по данным разных агентств (табл. 1). Удовлетворительно согласуются и оценки магнитуды основного толчка: М≈6.

Рис. 1. Район эпицентра Южно-Муйского землетрясения 13 ноября в 08^h43^m

1 – эпицентр (1) по [1]; 2 – эпицентры по данным агентств MOS, ISC, NEIC из [3], показанные на рис. 1 с номерами 2,3,4, соответственно; 3 – афтершок (5-11); 4,5 – сбросы и разрывные нарушения по [5]; 6 – разлом по [6]; 7 – осадочные отложения.

Эпицентр землетрясения располагался в юго-западной части субмеридионального горного отрога Южно-Муйского хребта (рис. 1). Согласно [5] с юго-запада к району эпицентра подходит глубинный сброс, ограничивающий юго-восточный борт Верхне-Муйской впадины, с запада горный отрог ограничивается локальным разломом с опущенным западным крылом. Элементы разломной тектоники на различных картах различаются. Так, в [6] указанные разломы не показаны, но обозначен линейный локальный разлом, пересекающий упомянутый горный отрог в направлении северо-запад-юго-восток и располагающийся значительно восточнее. Указанный разлом, в свою очередь, отсутствует в [5], но здесь отмечено локальное нарушение иной формы и ориентации неясного морфокинематического типа (флексура или разлом, рис. 1).

Результат определения механизма очага Южно-Муйского землетрясения по знакам первых вступлений Р-волн, приведенный в первой строке табл. 2, свидетельствует о том, что любая из двух возможных наклонных плоскостей подвижки, являющейся сбросом, должна иметь северо-восточное простирание, т.е. очаг землетрясения, очевидно, связан с зоной сброса северо-восточного простирания, описанного выше. Данное решение отличается от некоторых других в табл. 2 тем, что оно лучше согласуется с похожими механизмами очагов ряда афтершоков.

	Агентство	Дата,	4	54			Гипоце					
N⁰			ι ₀ ,	$Ol_0,$	o°N	Sco ^o	λ°, Ε	δλ°	h,	δh,	Магнитуда	Ист.
		дмі	ч мин с	U	ψ,Ν	θψ			КМ	КМ		
1	БОМСЭ	13.11.95	08 43 15.4	0.5	56.13	0.04	114.55	0.04	26	16	K _P =15	[1]
2	MOS		08 43 14.5	1.0	56.09	0.08	114.58	0.12	20		MPSP=6.1/14	[2]
											MS=6.1/18	
3	ISC		08 43 15.4	0.74	56.08	.08 0.018 114.49 0.030 26 5.4 Ms=5.9		Ms=5.9/56	[3]			
									21*	0.3*	mb=5.8/175	
4	NEIC		08 43 14.5		56.10		114.50 22		Ms=5.6/28	[3]		
											m _b =5.9/99	
											Mw=5.8(HRV)	
	HRVD		08 43 17.7		56.25		114.31		21		М ₀₌ 5.5*10 ¹⁷ Н⋅м	[3]
	CSEM		08 43 12.1		56.37		114.27				Mw=5.8	[3]
											М ₀₌ 5.7∗10 ¹⁷ Н⋅м	
	EIDC		08 43 12.4		56.07		114.65				Ms=5.5/14	[3]
											m _b =5.6/32	
	BJI		08 43 14.2		56.12 114.63				Ms=6.2	[3]		
_											m _b =5.6	
5	Бюллетень	13.11.95	11 21 21.2	0.3	56.07	0.02	114.54	0.03	21	18	K _P =9.9	[4]
6	Прибайкалья	15.11.95	22 09 54.2	0.3	56.08	0.02	114.52	0.03	23	23	10.5	[4]
7		03.12.95	02 30 17.7	0.2	56.12	0.02	114.59	0.02	22	18	10.6	[4]
8		08.12.95	01 59 00.7	0.1	56.10	0.02	114.57	0.02	16	10	10.4	[4]
9		15.01.96	02 07 21.6	0.3	56.07	0.02	114.52	0.03	19	21	9.5	[4]
10		13.07.96	19 09 37.1	0.4	56.13	0.03	114.58	0.04	25	18	12.2	[4]
11		25.08.96	12 36 08.9	0.4	56.12	0.03	114.47	0.03	19	23	10.4	[4]

Таблица 1. Основные параметры Южно-Муйского землетрясения и тех его афтершоков, для которых определен механизм очага

Примечание. Знаком * отмечена глубина h* по волнам pP-P, отраженным от дневной поверхности вблизи эпицентра

	Дата, дм		Оси главных напряжений												
Год		ι ₀ ,		Г	1	N]	2		NP1			NP2		Ист.
		ч мин	PL	AZM	PL	AZM	PL	AZM	STK	DP	SLIP	STK	DP	SLIP	
Главный толчок															
1995	13.11	08 43	1	134	13	224	78	44	56	46	-74	212	46	-107	[7]
		"	36	154	2	60	53	327	60	82	-92	253	8	-77	[8]
		"	0	101	28	191	62	11	36	51	-53	166	51	-127	[2]
		"	9	298	29	203	59	43	57	44	-46	184	60	-124	[3]-CSEM
		"	6	135	-	-	84	315	45	51	-90	225	39	-90	[3]-NEIC
		"	6	305	20	212	69	50	56	43	-59	197	54	-115	[3]-HRVD
						1	Афте	ршок	И						
	13.11	11 21	5	301	13	209	77	59	44	42	-71	199	50	-106	[8]
	15.11	22 09	62	128	28	289	9	21	142	44	133	270	60	56	[8]
	03.12	02 30	32	152	4	59	57	325	60	78	-93	256	12	-71	[8]
	08.12	01 59	3	129	9	40	80	236	31	50	-102	230	42	-75	[8]
1996	15.01	02 07	7	292	15	22	70	184	6	40	-144	215	54	-72	[8]
	13.07	19 09	5	124	3	216	83	348	36	50	-87	216	40	-94	[8]
	25.08	12 36	16	140	0	50	76	318	50	60	-90	230	30	-90	[8]

Таблица 2. Механизм очагов Южно-Муйского землетрясения и его афтершоков

Макросейсмические проявления. Южно-Муйское землетрясение ощущалось на значительной территории (более 500000 км²). Составленная на основе анкетных сведений из 62 пунктов схема макросейсмических проявлений представлена на рис. 2, исходные данные даны в табл. 3.

N⁰	Пункт	Δ, км	Звук	-	N⁰	Пункт	Δ , км	Звук
1 2 3 4 5 6 7 8 9 10	<u>6 баллов</u> Лапро Таксимо Тилишма Янчукан <u>5 баллов</u> Северомуйск Куанда Усть-Тельмама Новый Уоян Мамакан Томпа	25 35 65 105 60 100 170 180 195 320	гул гул гул гул гул гул гул		11 12 13 14 15 16 17 18 19 20 21	<u>4-5 баллов</u> Тоннельный Кичера <u>4 балла</u> Уакит Нерпо Усть-Каренга Горно-Чуйский Мама Нижнеангарск Воронцовка Северобайкальск Витим	70 275 90 155 225 235 260 315 315 330 385	гул гул

ЗЕМЛЕТРЯСЕНИЯ СЕВЕРНОЙ ЕВРАЗИИ в 1995 г.

N⁰	Пункт	Δ , км	Звук		N⁰	Пункт	Δ , км	Звук
22	Пеледуй	400		-		Не ощущалось		
23	Чита	460			39	Баунт	130	
24	Карымское	500			40	Новая Чара	240	
25	Ленск	510			41	Чара	240	
26	Хилок	595			42	Моклакан	320	
	3-4 балла				43	Кыкер	335	
27	Цоляти	80			44	Телемба	385	
21	Хонц	225			45	Казачинское	425	
20	Лани	333			46	Нерчинск	475	
	<u>3 балла</u>				47	Сретенск	475	
29	Светлый	270			48	Горячинск	530	
30	Юмурчен	280			49	Хоринск	540	
31	Тунгокочен	295			50	Усть-Уркима	540	
32	Район Моклакана	310			51	Улеты	550	
33	Шилка	480			52	І оловское	565	
	2-3 бална				55 54	<i>Хужир</i> Борионит	202	
24	<u>2-5 64,1,14</u>	0.5.5			55	Беркакит Цуль мон	023 265	
34	Улюнхан	255			55	Чульман Потрован Забайнан аний	505	
35	улан-удэ	655			50	Маний Нимии р	665	
	2 балла				58	Бош шой Нимпир	685	
36	Ерофей Парлории	530			50	Мухошибирі	715	
37	Vert-Kyr	545			60		730	
38	Иркутск	785			61	Бинура	770	
20	p	. 55			62	Култук	855	

Рис. 2. Карта изосейст Южно-Муйского землетрясения 13 ноября в 08^h43^m (K_P=15, MS=6.1).

1 - интенсивность сотрясений I в баллах по шкале MSK-64 [9]; 2 - инструментальный эпицентр; 3 - изосейста.

Максимальная наблюдавшаяся интенсивность сейсмических сотрясений очевидно превышала 6 баллов. В близких к эпицентру поселках на трассе БАМ после землетрясения стали непригодными для проживания порядка полусотни сборно-щитовых домов, в основном, правда, с истекшим нормативным

сроком службы.

В п. Таксимо на расстоянии 35 км от эпицентра обваливались куски штукатурки, отмечено повреждение дымовых труб, многие люди в испуге покидали помещения. Сумма ущерба от землетрясения в северных районах Бурятии согласно проведенной ориентировочной оценке составляет 50 миллиардов недоминированных рублей [10].

Распределение интенсивности сейсмических сотрясений по площади характеризовалось некоторыми особенностями, проявлявшимися и при иных землетрясениях. Изосейста I=4 балла оказалась растянутой в северном направлении. В районе, тяготеющем к г. Чите, выявилось усиление сейсмических эффектов. Обобщение подобных наблюдений при других землетрясениях северо-восточного фланга Байкальского рифта содержится, в частности, в [11]. Зависимость интенсивности сотрясений I от гипоцентрального расстояния г при глубине очага h=20 км

Зависимость интенсивности сотрясений I от гипоцентрального расстояния г при глубине очага h=20 км по данным табл. 3 представлена на рис. 3. Коэффициент затухания χ (в макросейсмической формуле I = a - χ lgr) для этого землетрясения равен χ =2.3±0.6, балльность в эпицентре I₀=6.4±0.7.

Рис. 3. Затухание интенсивности сотрясений от гипоцентрального расстояния

Полученное значение χ в пределах разброса данных не противоречит результатам аналогичного расчета этого параметра для Еловского землетрясения 29.06.1995 г. [12], указывая в то же время, что такие оценки весьма приближенны. Приведенные значения не сильно отличаются от первых определений χ в регионе [13], однако в других случаях ранее получались и существенно иные результаты ($\chi \sim 4$).

Литература

Голенецкий С.И., Леонтьева Л.Р. Прибайкалье и Забайкалье. См. раздел III (Каталоги землетрясений) в наст. сб.

Сейсмологический бюллетень (ежедекадный) за 1995 год. 1995-1996. / Отв. ред. О.Е. Старовойт. Обнинск: Изд-во ОМЭ ИФЗ РАН.

Bulletin of the International Seismological Centre for 1995.1997. Ньюбери: Изд-во ISC.

Бюллетень землетрясений Прибайкалья за 1995-1996 гг. 1998. Иркутск: Фонды БОМСЭ.

Карта новейшей тектоники юга Восточной Сибири. 1981. М: 1: 1 500 000 / Ред. Золотарев А.Г., Хренов П.М. Ленинград: Изд-во Мингео СССР.

Карта разломов юга Восточной Сибири. 1988. М: 1:1 500 000 / Ред. Хренов П.М. Ленинград: Изд-во Мингео СССР.

Голенецкий С.И. Прибайкалье и Забайкалье. См. раздел IV (Каталоги механизмов очагов) в наст. сб.

- Мельникова В.И., Радзиминович Н.А. 1998. Механизм очагов землетрясений Байкальского региона за 1991-1996 гг. // Геология и геофизика. Т.39. №11. С. 1598-1607.
- **Медведев С.В. (Москва), Шпонхойер В. (Иена), Карник В. (Прага). 1965.** Шкала сейсмической интенсивности MSK-64. М.: Изд-во МГК АН СССР. 11 с.
- Землетрясение в Забайкалье. 1995. Газета "Восточно-Сибирская правда" от 28.12.
- Голенецкий С.И., Дреннова Г.Ф., Ружич В.В. 1996. Землетрясения 1994 г. в районе Чарской впадины на северовосточном фланге Байкальского рифта // Физика Земли. №12. С. 130-139.
- Голенецкий С.И. Еловское землетрясение 29 июня 1995 года (MS=5.9). См. раздел II (Макросейсмические обследования) в наст. сб.
- **Голенецкий С.И. 1977.** Сотрясаемость Прибайкалья // Сейсмическое районирование Восточной Сибири и его геологогеофизические основы. Новосибирск: Наука. С. 185-196.