САХАЛИН

Т.А. Фокина, Л.Н. Поплавская, И.А. Паршина, М.И. Рудик, А.О. Бобков,

А.А. Шолохова, Г.И. Брагина

Параметры землетрясений региона (территория о. Сахалин с шельфом и восточная часть Приамурья) определены на основе материалов наблюдений четырех сейсмических станций (табл. 1), с привлечением данных сети сейсмических станций Приамурья и Курильских островов, а также данных ОМЭ ОИФЗ РАН [1], JMA, ISC [2]. Схема деления региона на районы и методы обработки данных [3-6] в целом не изменились, произошли изменения лишь в методике определения механизмов очагов коровых землетрясений [7].

<i>Таблица 1.</i> Сейсмические станции	Сахалина,	, работавшие в	1995 г., и их	к параметры
--	-----------	----------------	---------------	-------------

	Станция	I		Пата	Координаты			Аппаратура			
№	Название	Межл	ОД Рег	открытия	φ°, Ν	λ°, Ε	h, M	Тип прибора	Компо-	V _{max} /	ΔT_{max} ,
1	2	<u>з</u>	4	5	6	7	8	приобра 9	10	11	12
1	Южно-Сахалинск*	YSS	ЮCX	1957, март	46.97	142.77	100	СКМ СКД СКД-КПЧ С5В ОСП СРЗ	N,E,Z N,E,Z N,E,Z N,E,Z N,E,Z N,E,Z N,E,Z N,E,Z N,E,Z N E Z N E Z	$\begin{array}{c} 40000\\ 20000\\ 10000\\ 1000\\ 200\\ 100\\ 200\\ 100\\ 2.5.0 \ c\\ 2.5 \ c\\ 0.04 \ c^2\\ 0.04 \ c^2\\ 0.04 \ c^2\\ 0.0209 \ c^2\\ 0.0210 \ c^2\\ 0.0209 \ c^2\end{array}$	$\begin{array}{c} 0.33 \text{-} 0.85 \\ 0.31 \text{-} 0.84 \\ 0.20 \text{-} 20.0 \\ 0.20 \text{-} 18.0 \\ 0.20 \text{-} 18.0 \\ 0.20 \text{-} 16.0 \\ 0.17 \text{-} 15.0 \\ 0.045 \text{-} 4.6 \\ 0.045 \text{-} 4.6 \\ 0.045 \text{-} 4.6 \\ 0.020 \text{-} 1.1 \\ 0.020 \text{-} 2.2 \\ 0.019 \text{-} 2.8 \\ 0.058 \text{-} 11.0 \\ 0.054 \text{-} 11.0 \\ 0.054 \text{-} 11.0 \end{array}$
2	Углегорск	UGL	УГЛ	1950, декабрь	49.08	142.07	25	СКМ СКД С5В ОСП СР3 С5С	N,E,Z N,E,Z N,E,Z N,E,Z N,E,Z N,E,Z N,E,Z N,E,Z N,E,Z N,E,Z N,E,Z	$\begin{array}{c} 10000\\ 5000\\ 2500\\ 2500\\ 200\\ 25.0\ c\\ 2.5\ c\\ 0.05\ c^2\\ 0.0238\ c^2\\ 0.0238\ c^2\\ 0.0229\ c^2\\ 300\\ 20 \end{array}$	$\begin{array}{c} 0.36\text{-}0.65\\ 0.36\text{-}0.65\\ 0.20\text{-}20.0\\ 0.20\text{-}18.0\\ 0.20\text{-}18.0\\ 0.20\text{-}18.0\\ 0.20\text{-}18.0\\ 0.20\text{-}18.0\\ 0.045\text{-}4.6\\ 0.045\text{-}4.6\\ 0.02\text{-}1.1\\ 0.067\text{-}11.0\\ 0.066\text{-}11.0\\ 0.066\text{-}11.0\\ 0.36\text{-}0.7\\ 0.36\text{-}0.7\\ \end{array}$
3	Oxa	ОКН	OXA	01.12.1958	53.60	142.94	36	СКМ СКД С5В ОСП СР3 С5С	N,E.Z N,E.Z N,E.Z N,E.Z N,E.Z N,E.Z N,E.Z N E Z N,E.Z E,Z	$\begin{array}{c} 6000\\ 3000\\ 1000\\ 500\\ 200\\ 2.5.0\ c\\ 2.5\ c\\ 0.045\ c^2\\ 0.015\ c^2\\ 0.014\ c^2\\ 0.016\ c^2\\ 2.5.0\\ 1.0\\ \end{array}$	0.35-0.73 0.35-0.73 0.20-20.0 0.20-18.0 0.20-18.0 0.045-4.6 0.045-4.6 0.045-4.6 0.045-0.08 0.045-0.08 0.045-0.08 0.051-0.11 2.0-4.8 2.0-4.8
4	Тымовское*	TIV	ТМС	02.04.1969	50.86	142.66	160	СКМ СКД С5В ОСП СРЗ С5С	N,E N,E Z Z N,E,Z N,E,Z N,E,Z N,E,Z N,E Z N,E Z N,E,Z N,E,Z	$\begin{array}{c} 50000\\ 25500\\ 110000\\ 50000\\ 25000\\ 1000\\ 500\\ 200\\ 25.0\ c\\ 2.5\ c\\ 0.04\ c^2\\ 0.04\ c^2\\ 0.0018\ c^2\\ 0.0017\ c^2\\ 50.0\\ 5.0\end{array}$	$\begin{array}{c} 0.17\mathcal{-}0.14\mathcal{-}0.58\\ 0.14\mathcal{-}0.68\\ 0.36\mathcal{-}0.65\\ 0.35\mathcal{-}0.66\\ 0.020\mathcal{-}20.0\\ 0.020\mathcal{-}18.0\\ 0.020\mathcal{-}18.0\\ 0.020\mathcal{-}18.0\\ 0.045\mathcal{-}4.6\\ 0.03\mathcal{-}2.0\\ 0.03\mathcal{-}2.0\\ 0.03\mathcal{-}2.0\\ 0.05\mathcal{-}5\mathcal{-}10.0\\ 2.0\mathcal{-}4.8\\ 2.0\mathcal{-}4.8\\ \end{array}$

Примечание. Знаком * помечены опорные станции. Сейсмографы C5C, велосиграфы C5B, акселерографы ОСП и СРЗ работают в ждущем режиме регистрации.

В 1995 г. были определены параметры 1525 землетрясений с $K_C \ge 6.5$, из них в каталог [8] включены 867 с $K_C \ge 7.6$. Карта их эпицентров дана на рис. 1. Для 35 землетрясений, 29 из которых – коровые, 6 – глубокофокусные (h> 300 км), определены механизмы очагов [9], представленные на рис. 2.

Рис. 1. Карта эпицентров землетрясений Сахалина за 1995 г. 1 – энергетический класс К_С; 2 – глубина h гипоцентра, км; 3 – сейсмическая станция; 4 – номер и граница района.

Рис. 2. Карта механизмов очагов землетрясений Сахалина за 1995 г.

Нумерация очагов соответствует рис. 1 и каталогам [8,9]. Стереограммы механизмов очагов даны в проекции на нижнюю полусферу (зачернены области сжатия).

Крупнейшим сейсмическим событием года явилось катастрофическое Нефтегорское землетрясение [10], происшедшее 27 мая в 13^h03^m на глубине 18 км с магнитудой MLH=7.0 [8], практически, полностью уничтожившее поселок Нефтегорск. За счет этого землетрясения и его многочисленных афтершоков суммарная сейсмическая энергия региона Сахалин, равная 3.98*10¹⁶ Дж (табл. 2,3), почти в 10⁶ раз превысила соответствующую энергию, выделившуюся в регионе в 1994 г. [12]. За 1995 г. произошло 83 ощутимых землетрясения (табл. 4) интенсивностью от 2 до 8-9 баллов, 76 из которых являются афтершоками Нефтегорского землетрясения.

N⁰	Районы	K _{min}	6	7	K	C _C	10	11	MLH=7.0	$\Sigma E^{*10^{11}},$
	~		0	/	0	9	10	11		Дж
1a.	Северный	>7	1	6	6	1	1			0.12
1б.	Нефтегорское зем-ние и афтершоки		83	558	630	163	32	6	1	398011.52
2.	Охотоморский шельф	>7	-	1	-	-	-	-		0.0001
3.	Восточно-Сахалинский	7	-	-	2	1	1	-		0.11
4.	Западно-Сахалинский	7	-	5	4	3	-	-		0.034
5.	Юго-Восточный	7	-	-	-	1	-	-		0.01
6.	Восточная часть Южного Сахалина	7	1	-	-	-	-	-		0.00001
7.	Хабаровский приграничный	7	-	1	3	1	-	-		0.0032
	Всего		85	572	645	169	34	6	1	398011.79

Таблица 2. Распределение числа коровых землетрясений по энергетическим классам К_с и суммарная сейсмическая энергия ΣЕ по районам

Примечание. Энергия Нефтегорского землетрясения рассчитана по формуле [13]: IgE=4+1.8M, Дж.

Таблица 3. Распределение числа глубоких землетрясений по магнитудам MSH и суммарная сейсмическая энергия ΣЕ

Ма Вайан		Mmin		$\Sigma E^{*10^{11}}$,		
JNO	Район	IVIIIIII	4.0	5.0	6.0	Дж
5.	Юго-Восточный	5.0	2	9	2	200.9

Примечание. При составлении таблицы величина всех землетрясений приводилась к магнитуде MLH путем пересчета из классов К_С для землетрясений с h<80 км и из магнитуд MSH – с h≥80 км по следующим соотношениям: MLH=(K_C-1.2)/2 и MLH=(MSH-1.71)/0.75. Для второго соотношения вводилась поправка за глубину очага.

<i>паолица</i> 4. Распределение ощутимых землетрясении по раионам Сахали
--

N⁰	Район	Число ощутимых землетрясений	MLH _{max}	I _{max} , балл
1a.	Северный	6	4.6	6
1б.	Нефтегорский	73	7.0	8-9
2.	Охотоморский шельф	-	-	-
3.	Восточно-Сахалинский	1	4.6	4
4.	Западно-Сахалинский	3	3.7	3-4
5.	Юго-Восточный	-	-	-
6.	Восточная часть Южного Сахалина	-	-	-
7.	Хабаровский приграничный	-	-	-

Северный район (№1 на рис. 1, в табл. 2). В период с 1 января по 27 мая было зарегистрировано незначительное количество землетрясений. Можно отметить два события: 27 января в $02^{H}19^{m}$ с K_{C} =8.6 и h=10 км юго-восточнее пос. Погиби (1 на рис. 1) и 17 апреля в $17^{h}56^{m}$ с K_{C} =10.1 (MLH=4.6) и h=15 км на пове Шмидта (6 на рис. 1,2). Максимальная интенсивность сотрясений от этого землетрясения составила 5-6 балиов и расс. баллов в пос. Ныврово (табл. 5, рис. 3).

Таблица 5. Макросейсмические данные о землетрясении 17 апреля 1995 г. в 17^h56^m (K_C=10.1, MLH=4.6)

N⁰	Пункт*	Δ, км		№	Пункт*	Δ, км
	<u>5-6 баллов</u>		-	4	Колендо, пос.	35
1	Ныврово, пос.	23		3	Оха, г. 3 балла	00
2	<u>5 баллов</u> Валовская зим	18		6	Тунгор, пос.	77
2	<u>4 балла</u>	10		-	<u>2-3 балла</u>	
3	Мыс Марии	37			Лагури, пос.	65
	<u>3-4 балла</u>			8	Нефтегорск, пгт.	122

*Сокращенные обозначения: г. – город, пгт. – поселок городского типа, пос. – поселок, зим. – зимовье.

Сейсмичность Северного района сильно активизировалась в результате Нефтегорского землетрясения и его афтершоков, продолжавшихся до конца года. Форшоки данного землетрясения отмечены не были, возможно, из-за отсутствия ближайших к эпицентру станций, закрытых в 1993-94 гг. [12,14].

Нефтегорское землетрясение произошло 27 мая в 13^h03^m с MLH=7.0 на глубине h=18±5 км (8,9 на Нефтегорское землетрясение произошло 27 мая в 13^в03^ш с MLH=7.0 на глубине h=18±5 км (8,9 на рис.1, 2). Эпицентр находился южнее поселка городского типа Нефтегорск. По нашим данным землетрясение состояло из двух толчков – в 13^h03^m49.0^s и в 13^h03^m53.2^s. Второй толчок, по-видимому, оказался значительно большей энергии, поэтому большинство удаленных станций зарегистрировали только его. Эпицентр первого удара Нефтегорского землетрясения локализован по данным наблюдений региональных сетей Дальнего Востока, Северо-Востока Росии, Якутии и Прибайкалья, а также шести телесейсмических станций с Δ=20-55^o. Второй толчок локализован по данным наблюдений упомянутых выше сетей, однако, для него имеется заметно большее число телесейсмических данных (Δ=63-68^o). Глубины очагов обоих толчков определены двумя способами: по фазам pP и sP (15 наблюдений для первого, 5 – для второго), а также методом минимизации невязок к годографу на близких и удаленных станциях.

Отметим, что при первоначальном определении основных параметров очага в [10] были допущены

большие погрешности. Из-за недостатка финансирования в 1993-94 гг. на севере Сахалина были закрыты три сейсмические станции: "Оха", "Ныврово" и "Ноглики" [12]. Поэтому перед главным толчком 27 мая в регионе работали только три станции: "Южно-Сахалинск", "Николаевск-на-Амуре" и "Углегорск". Сейсмическая станция "Тымовское" была отключена в связи с неуплатой за электроэнергию. Параметры очага в [8] уточнены на основе данных отечественных и зарубежных сейсмических станций.

Рис. 3. Макросейсмическая схема землетрясения 17 апреля 1995 г. в $17^{h}56^{m}$ (K_C=10.1, MLH=4.6)

Здесь и на рис. 4-6: 1 – балльность по шкале MSK-64; 2 – инструментальный эпицентр.

Механизм очага первого толчка найден по методике [7] с использованием знаков вступлений Р-, pP-, S-, S_g-волн по данным 23 станций. Для определения механизма очага второго толчка послужили сведения о первых смещениях в Р-волнах на 406 сейсмических станциях мира. 85%-доверительную область составили 5 решений, одно из которых – с максимальным значением функции правдоподобия. Интерпретация механизма очага позволяет установить, что очаг находился под воздействием близгоризонтально ориентированных напряжений сжатия (e=3°) и более крутых напряжений растяжения. Одна из возможных плоскостей разрыва имеет субмеридиональное простирание и сравнительно крутое (e=58°) падение на запад. Подвижка в данной плоскости разрыва носит характер взбросо-сдвига, с преобладанием сдвиговой компоненты, при этом западное крыло разрыва смещено относительно восточного к югу и вверх. Другая возможная плоскость разрыва имеет простирание северо-западное с падением к северо-востоку и характеризуется взбросо-сдвиговой подвижкой, при этом северо-западное крыло разрыва смещено вверх и на северо-запад. Как видим (рис. 2), решения задачи о механизме очагов обоих толчков близки, хотя ориентация

Как видим (рис. 2), решения задачи о механизме очагов обоих толчков близки, хотя ориентация первого очага относительно горизонта более крутая, нежели второго. В обоих случаях характерная сейсмодислокация – правосторонний сдвиг вдоль субмеридиональной плоскости, что подтверждается результатами полевых наблюдений на сейсморазрыве [15].

Макросейсмический эффект Нефтегорского землетрясения, по-видимому, является суммарным, вряд ли удастся разделить его по событиям, следующим друг за другом через несколько секунд. Землетрясение, сопровождавшееся полным обрушением большей части зданий и гибелью жителей, произошло впервые в нынешнем столетии не только на Сахалине, но и в России, хотя 8-балльные эффекты наблюдались при известном Ногликском землетрясении 02.10.1964 г. в 00^h58^m с M=5³/₄ [16,17].

Катастрофическое Нефтегорское землетрясении 02.10.1964 г. в 00.35 С М – 5/4 [10,17]. Катастрофическое Нефтегорское землетрясение ощущалось на территории Северного, Среднего и частично Южного Сахалина, а также на востоке центральной части Хабаровского края. Максимальный макросейсмический эффект в 8-9 баллов отмечен в Нефтегорске. Сбор макросейсмических данных был начат 30 мая сотрудниками ОМСП А.А. Шолоховой, А.А. Садчиковой, Н.А Давыдовой, М.Д. Кузнецовым. В период с 30 мая по 7 июня были собраны данные в эпицентре землетрясения, а также в населенных пунктах центральной, восточной и западной части о. Сахалин. Затем, к работе в эпицентральной зоне приступили ученые ИМГиГ, экспедиции ИФЗ РАН, Японии и других стран [10].

Участниками обследования последствий Нефтегорского землетрясения собран значительный и разнообразный материал. Были отмечены следующие явления на поверхности земли: повреждения насыпи и рельсового пути узкоколейной железной дороги Оха-Ноглики на участке между станциями Сабо и Паромай, а также, ее ветки на станцию Нефтегорск; разрыв стыков магистрального нефтепровода Лагури-Погиби; многочисленные трещины оползневого характера по крутым и даже сравнительно пологим выемкам и откосам шоссейных и узкоколейных железных дорог, по берегам рек, ручьев и озер; образование в водонасыщенных грунтах грязевых и песчаных вулканов и грифонов различных размеров [10].

Макросейсмическому эффекту посвящена отдельная статья в наст сб. [11]. Главный толчок породил серию афтершоков. В первые сутки, 28 мая, было зарегистрировано 45 событий, следующих друг за другом с интервалом 7-30 минут, энергетический класс которых составил К_С=7.9-10.9. Эта тенденция сохранилась до середины июня. Большое число афтершоков зарегистрировано с 11 по 23 июня с помощью шести станций ИФЗ, шести Японских переносных цифровых станций Центра по прогнозу землетрясений Хоккайдского Университета, а также трех станций ОМСП ИМГиГ [10]. До конца 1995 г. было зарегистрировано 1472 афтершока Нефтегорского землетрясения. Интенсивность их имакросейскимисто рафекта не прогнози. макросейсмического эффекта не превышала 6 баллов.

Удалось определить механизмы очагов для 24 афтершоков. Механизмы этих землетрясений разнообразны (рис. 2), и распадаются на две группы: к первой относятся механизмы очагов 12,13,15,20,23,26,30,35,36,40,50,53 с близгоризонтальными напряжениями сжатия, а ко второй группе (28,29,32,33,37,38,39,43,57,60,61,66) – с близгоризонтальными напряжениями растяжения. В очагах

 (26,27,52,53,57,56,57,56,57,50,57,60,60,60,60) — с олизгоризонтальными напряжениями растяжения. Б очагах
землетрясений первой группы основная сейсмодислокация – сдвиго-надвиг, в очагах второй – сброс.
30 сентября началась серия землетрясений в районе пос. Ноглики. Главный толчок произошел 30
сентября в 13^h56^m с K_C=11.0, MLH=5.0 северо-западнее пос. Ноглики (53 на рис.1), где ощущался с
интенсивностью в 6 баллов (табл. 6, рис. 4), для него определен механизм очага (рис. 2). Землетрясение произошло в условиях близгоризонтального напряжения сжатия и более крутого напряжения растяжения. Характерный тип подвижки – сдвиго-надвиг.

Таблица 6. Макросейсмические данные о землетрясении 30 сентября 1995 г. в 13^h56^m (K_C=11.0, MLH=5.0)

№	Пункт*	Δ , км	№	Пункт*	Δ , км
	<u>6 баллов</u>			<u>4 балла</u>	
1	Ноглики, пгт.	20	10	Вал, пос.	45
	<u>5 баллов</u>			<u>3-4 балла</u>	
2	Венское, пос.	10	11	Альба, пос.	69
3	Гор. Ключи, пос.	12	12	Иркир,пос.	82
4	Даги, пос.	21	13	Пильтун, ж/д ст	84
5	Катангли, пос.	35	14	Сабо, пос.	130
	<u>4-5 баллов</u>			<u>3 балла</u>	
6	Набиль, порт	33	15	Тымовское, пгт.	125
7	Ныш, пос.	50		2-3 балла	
8	Ныш, хутор	52	16	Van Haa	00
9	Ныш, ж/д ст.	53	10	А09, ПОС. Алексондрорск Сахалинский г	90
			1/	Александровек-Сахалинский, Г.	123

Рис. 4. Макросейсмическая схема землетрясения 30 сентября 1995 г. в 13^h56^m (K_C=11.0, MLH=5.0)

Серия афтершоков этого землетрясения продолжалось до конца года, самые значительные события: 4 октября в $08^{h}05^{m}$ с K_{C} =9.9 (MLH=4.0), 6 октября в $01^{h}44^{m}$ с K_{C} =8.7, 10 октября в $08^{h}44^{m}$ с K_{C} =9.0, а также, 17 декабря в $22^{h}15^{m}$ с K_{C} =9.1 (MLH=4.0), (54,55,56,65 на рис. 1). Макросейсмический эффект этих толчков не превышал 4 баллов в пос. Ноглики.

В Сахалинском заливе прослжалась афтершоковая деятельность землетрясения, происшедшего 3 декабря 1994 г., наиболее значительные события: 24 сентября в $21^{h}53^{m}$ с K_{c} =8.7 и 1 декабря в $02^{h}59^{m}$ с K_{c} =10.0, последнее ощущалось в г. Охе с интенсивностью до 3 баллов (52,63 на рис. 1).

К_C=10.0, последнее ощущалось в г. Охе с интенсивностью до 3 баллов (52,63 на рис. 1). **На Охотоморском шельфе** (№2 на рис. 1, в табл. 2) в 1995 г. зарегистрировано только одно землетрясение, которое произошло 24 ноября в 05^h04^m на глубине h=10 км с К_C=7.9. Сейсмическая активность **Восточно-Сахалинского района** (№3 на рис. 1, в табл. 2) была выше таковой в 1994 г. [12]. 15 сентября в 08^h29^m зарегистрировано землетрясение с К_C=10.5, МLH=4.6. Эпицентр располагался юго-восточнее пос. Тымовское (49 на рис. 1,2), максимальная интенсивность сотрясений составила 4 балла (табл. 7, рис. 5). Землетрясение произошло в условиях близгоризонтально ориентированного напряжения растяжения и более крутого сжимающего напряжения, что обусловило подвижку типа взреза (поддвига). Отмечена серия афтершоков этого землетрясения, самый значительный из них зарегистрирован 20 сентября в 12^h28^m с К_C=8.8, MLH=3.7 (51 на рис. 1).

Таблица 7. Макросейсмические данные о землетрясении 15 сентября в $08^{h}29^{m}$ (K_C=10.5, MLH=4.6)

№	Пункт*	Δ, км	 №	Пункт*	Δ, км
1 2 3 4	<u>4 балла</u> Пограничное, пос. <u>3 балла</u> Тымовское, пгт. <u>2-3 балла</u> Кировское, пос. Подгорное, пос.	18 76 66 78	5 6 7 8 9	<u>2 балла</u> Восход, пос. Славы, пос. Горки, пос. Александровск- Сахалинский, г. Ноглики, пгт.	78 89 100 110 20

Рис. 5. Макросейсмическая схема землетрясения 15 сентября в $08^{h}29^{m}$ (K_C=10.5, MLH=4.6)

Сейсмичность Западно-Сахалинского района (№4 на рис. 1, в табл. 2) была выше сейсмичности, наблюдаемой в 1994 г. Наиболее значительные землетрясения произошли: 25 октября в $11^{h}12^{m}$ с K_{C} =9.0 и 6 ноября в $07^{h}06^{m}$ с K_{C} =9.1 (58,59 на рис.1). Произошло также два ощутимых землетрясения: 9 сентября в 18^{h} 02^{m} с K_{C} =8.6 (48 на рис. 1) с интенсивностью сотрясений 3 балла в г. Холмске (Δ =35 км), и 26 октября в 04^{h} 21^{m} с K_{C} =8.1 (интенсивность в г. Анива (Δ =19 км) составила 3-4 балла).

Юго-восточный район (№5 на рис. 1, в табл. 2,3). В заливе Терпения наблюдалось сейсмическое затишье, можно отметить лишь одно глубокофокусное землетрясение, происшедшее 2 июля в 18^в47^m на глубине h=390 км, MSHA=4.7 (42 на рис.1). В заливе Анива зарегистрированы глубокофокусные землетрясения в диапазоне глубин 260-375 км (3,4,5,7,24,34,44-47,64 на рис. 1). Для шести землетрясений (3,5,44-46,64) определены механизмы очагов (рис. 2). Два очага (10 марта в 05^h22^m с MSH=6.2 и 3 декабря в 01^h19^m с MSH=4.9) находились в условиях преобладания растягивающих напряжений и характеризовались сдвиговыми дислокациями (5,64 на рис. 1,2). Очаги остальных сейсмических событий, находившихся под преимущественным воздействием сжимающих напряжений, характеризовались дислокациями типа взброса или взбросо-сдвига.

В Восточной части Южного Сахалина (№6 на рис. 1, в табл. 2) в течение 1993-1995 гг. наблюдалось сейсмическое затишье.

Хабаровский приграничный район (№7 на рис. 1, в табл. 2). В этом районе зарегистрировано небольшое количество толчков, которое несколько выше, чем в предыдущем году. Заметным событием было землетрясение 8 февраля в $06^{h}51^{m}$ на западном побережье Татарского пролива с K_{C} =9.1 и h=7 км (2 на рис. 1).

Литература

- 1. Сейсмологический бюллетень (ежедекадный) за 1995 год. 1995-1996. / Отв. ред. О.Е. Старовойт. Обнинск: Издво ОМЭ ИФЗ РАН.
- 2. Bulletin of the International Seismological Centre for 1995. 1997. Ньюбери: Изд-во ISC.
- Поплавская Л.Н., Бобков А.О., Кузнецова В.Н., Нагорных Т.В., Рудик М.И. 1989. Принципы формирования и состав алгоритмического обеспечения регионального центра обработки сейсмологических наблюдений (на примере Дальнего Востока) // Сейсмологические наблюдения на Дальнем Востоке (Методические работы ЕССН). М.: Наука. С. 32-51.
- Оскорбин Л.С., Бобков А.О. 1997. Сейсмический режим сейсмогенных зон юга Дальнего Востока // Проблемы сейсмической опасности Дальневосточного региона. Южно-Сахалинск: Изд-во ИМГиГ. С. 179-197. (Геодинамика тектоносферы зоны сочленения Тихого океана с Евразией. Т.VI.).
- 5. Балакина Л.М., Введенская А.В., Голубева Н.В., Мишарина Л.А., Широкова Е.И. 1972. Поле упругих напряжений Земли и механизм очагов землетрясений. М.: Наука. 192 с.
- 6. Аптекман Ж.Я., Желанкина Т.С., Кейлис-Борок В.И., Писаренко В.Ф., Поплавская Л.Н., Рудик М.И., Соловьев С.Л. 1979. Массовое определение механизмов очагов землетрясений на ЭВМ // Теория и анализ сейсмологических наблюдений. М.: Наука. С. 45-58. (Вычислительная сейсмология; Вып12).
- 7. **Поплавская** Л.Н., Нагорных Т.В., Рудик М.И. Методика и первые результаты массовых определений механизмов очагов коровых землетрясений Дальнего Востока. См. раздел I (Обзор сейсмичности) в наст. сб.
- 8. Фокина Т.А., Поплавская Л.Н. (отв. сост.), Шолохова А.А., Садчикова А.А., Величко Л.Ф., Паршина И.А., Левит Е.В. Сахалин. См. раздел III (Каталоги землетрясений) в наст. сб.
- 9. Поплавская Л.Н. (отв. сост.), Рудик М.И., Паршина И.А. Сахалин. См. раздел IV (Каталоги механизмов очагов землетрясений) в наст. сб.
- 10. Нефтегорское землетрясение 27(28). 05. 1995. М.: Изд-во МЧС России, РАН. 1995. 236 с. (ФССН. Информ.аналит. бюлл. Экстренный выпуск, октябрь.).
- Оскорбин Л.С., Поплавский А.А., Стрельцов М.И., Шолохова А.А., Давыдова Н.А., Койкова Л.Ф., Садчикова А.А., Хритова Л.И. Нефтегорское землетрясение 27 мая 1995 года. См. раздел II (Макросейсмические обследования) в наст. сб.
- 12. Шолохова А.А., Рудик М.И., Паршина И.А., Бобков А.О. 2000. Сахалин // Землетрясения Северной Евразии в 1994 году. М.: Изд-во ОИФЗ РАН. С. 84-87.
- Раутиан Т.Г. 1960. Энергия землетрясений / Методы детального изучения сейсмичности. М.: Изд-во АН СССР. С. 75-114. (Тр. ИФЗ АН СССР; №9(176)).
- 14. Шолохова А.А., Рудик М.И. 1999. Землетрясения Сахалина // Землетрясения Северной Евразии в 1993 году. М.: Изд-во НИА-Природа. С. 87-90.
- Рогожин Е.А. 1995. Нефтегорское землетрясение 27(28) мая 1995 г.: геологические проявления и тектоническая позиция очага // Нефтегорское землетрясение 27(28). 05. 1995. М.: Изд-во МЧС России, РАН. 1995. С. 80-94. ((ФССН. Информ.- аналит. бюлл. Экстренный выпуск, октябрь.).
- 16. Соловьев С.Л., Соловьева О.Н., Оскорбин Л.С., Поплавская Л.Н., Жук Ф.Д., Глебова А.Н., Волкова Л.Ф., Якушева В.Н. 1967. Землетрясения Дальнего Востока // Землетрясения в СССР в 1964 году. М.: Наука. С. 128-165.
- 17. Оскорбин Л.С. (отв. сост.), Соловьева О.Н., Соловьев С.Л., Волкова Л.Ф., Ким С.Д. 1977. VIII. Сахалин // Новый каталог сильных землетрясений на территории СССР с древнейших времен до 1975 г. М.: Наука. С. 358-373.