## ОЧАГОВЫЕ ПАРАМЕТРЫ СИЛЬНЫХ ЗЕМЛЕТРЯСЕНИЙ ЗЕМЛИ

## А. И. Захарова, Л. С. Чепкунас

Рассмотрены очаговые параметры ряда наиболее сильных землетрясений Земного шара, главным образом, с магнитудой MS>6.5 (n=22). Основные параметры: время возникновения  $t_0$ , координаты гипоцентра  $\varphi$ ,  $\lambda$ , h и магнитуды MS, MPLP, MPSP, mb, Mw; динамические параметры: сейсмический момент  $M_0$ , длина разрыва в очаге L, сброшенное  $\Delta \sigma$  и кажущееся  $\eta \sigma$  напряжения, величина подвижки u, элементы механизмов очагов.

Основные параметры очагов представлены в табл. 1, где I – данные сейсмологического бюллетеня ОМЭ ОИФЗ РАН [1], а II, III – Международного сейсмологического бюллетеня (ISC) [2]. При этом данные I и II получены по временам первых вступлений продольных Р-волн на основе годографа Джеффриса-Буллена, но по разным системам сейсмических наблюдений, III – по методу тензора момента центроида [3]. Различия в значениях основных параметров  $t_0$ ,  $\varphi$ ,  $\lambda$ , h по I и II в большинстве случаев не превышают погрешности их определений. Однако, как отмечалось в прежних публикациях, например в [4], наблюдаются различия в значениях магнитуд. Так, несмотря на одинаковую методику определения, значения MS по I устойчиво превышают Ms по II. И, хотя в большинстве случаев эти различия не превосходят точности определения магнитуд (0.2-0.3) и лишь для четырех землетрясений достигают 0.4-0.6, выявленная тенденция требует дополнительного анализа.

|    | Пата  |        |                  | Эпицентр |           |    |     | Магни          | итуды |     |                                           |  |
|----|-------|--------|------------------|----------|-----------|----|-----|----------------|-------|-----|-------------------------------------------|--|
| N⁰ | дата, | Ист.   | t <sub>0</sub> , | 0.11     | 10 F      | h. |     | MPSP.          | MDLD  | 1.0 | Район                                     |  |
|    | д м   |        | ч мин с          | φ°,N     | λ°,Ε      | КМ | Mw  | m <sub>b</sub> | MPLP  | MS  |                                           |  |
| 1  | 2     | 3      | 4                | 5        | 6         | 7  | 8   | 9              | 10    | 11  | 12                                        |  |
| 1  | 06.01 | Ι      | 22 37 37.4       | 40.29    | 142.18    | 50 |     | 7.2            | 7.3   | 7.2 | Восточное побережье острова Хонсю. Япония |  |
| -  |       | ĪI     | 22 37 37.3       | 40.23    | 142.23    | 51 |     | 6.6            |       | 6.9 | ,                                         |  |
|    |       | III    | 22 37 42.6       | 40.33    | 142.41    | 48 | 7.0 |                |       |     |                                           |  |
| 2  | 16.01 | T      | 20 46 51 3       | 34 64    | 134 99    | 17 |     | 6.8            | 7.0   | 72  | Южное побережье острова Хонсю Япония      |  |
| 2  | 10.01 | Î      | 20 46 51 9       | 34 55    | 135.04    | 19 |     | 6.0            | 7.0   | 6.9 | Towarde notepende despola Moneto, Mionida |  |
|    |       | ÎII    | 20 46 59 4       | 34.78    | 134.99    | 20 | 6.9 | 0.1            |       | 0.7 |                                           |  |
| 3  | 17.04 | I      | 23 28 10 4       | 45.95    | 151.23    | 51 | 0.7 | 62             | 6.6   | 7.0 | Курильские острова Россия                 |  |
| 5  | 17.01 | Î      | 23 28 07 0       | 45.88    | 151.30    | 23 |     | 6.1            | 0.0   | 6.5 | Ryphillettie oerpobe, i oeenn             |  |
|    |       | ÎII    | 23 28 16.0       | 45.80    | 151.46    | 42 | 6.7 | 0.1            |       | 0.0 |                                           |  |
| 4  | 21.04 | I      | 00 09 57.6       | 11.99    | 125.61    | 46 |     | 6.8            | 7.0   | 7.0 | Остров Самар. Филиппины                   |  |
| -  |       | II     | 00 09 54.4       | 12.01    | 125.67    | 20 |     | 6.1            |       | 6.8 | ••••••••••••••••••••••••••••••••••••••    |  |
|    |       | III    | 00 10 01.5       | 12.08    | 125.77    | 15 | 6.8 |                |       |     |                                           |  |
| 5  | 21.04 | Ι      | 00 30 13.0       | 12.08    | 125.72    | 33 |     | 7.0            |       |     | Остров Самар. Филиппины                   |  |
|    |       | ĪI     | 00 30 11.8       | 11.94    | 125.58    | 15 |     | 6.2            |       | 6.6 | ••••••••••••••••••••••••••••••••••••••    |  |
|    |       | Ш      | 00 30 18.7       | 12.17    | 126.03    | 15 | 6.8 |                |       |     |                                           |  |
| 6  | 21.04 | I      | 00 34 48.7       | 12.25    | 125.53    | 33 | 0.0 | 6.5            |       | 7.6 | Остров Самар. Филиппины                   |  |
|    |       | ĪI     | 00 34 46.5       | 12.07    | 125.58    | 21 |     | 6.2            |       | 7.2 | ••••••••••••••••••••••••••••••••••••••    |  |
|    |       | III    | 00 34 59.8       | 12.27    | 125.69    | 22 | 7.1 |                |       |     |                                           |  |
| 7  | 21.04 | Ι      | 05 17 02.2       | 12.13    | 125.95    | 33 |     | 6.4            | 6.6   | 7.0 | Остров Самар, Филиппины                   |  |
|    |       | II     | 05 17 01.9       | 12.03    | 125.87    | 27 |     | 5.6            |       | 6.8 | 1 17                                      |  |
|    |       | III    | 05 17 08.4       | 12.20    | 126.24    | 15 | 6.8 |                |       |     |                                           |  |
| 8  | 23.04 | Ι      | 05 08 04.2       | 12.64    | 125.46    | 33 |     | 6.8            | 7.2   | 6.9 | Остров Самар, Филиппины                   |  |
|    |       | II     | 05 07 58.1       | 12.37    | 125.49    | 1  |     | 6.1            |       | 6.6 | 1 17                                      |  |
|    |       | III    | 05 08 07.5       | 12.42    | 125.61    | 15 | 6.7 |                |       |     |                                           |  |
| 9  | 28.04 | Ι      | 16 30 00.8       | 44.03    | 147.93    | 33 |     | 6.9            |       | 6.9 | Курильские острова, Россия                |  |
|    |       | II     | 16 30 01.4       | 43.92    | 148.01    | 38 |     | 6.4            |       | 6.8 | Jr · · · · · · · · · · · · · · · · · · ·  |  |
|    |       | III    | 16 30 10.0       | 43.98    | 148.25    | 34 |     |                |       |     |                                           |  |
| 10 | 27.05 | Ι      | 13 03 55.9       | 52.64    | 142.87    | 33 |     | 7.1            | 7.1   | 7.7 | Остров Сахалин, Россия                    |  |
|    |       | II     | 13 03 52.2       | 52.60    | 142.85    | 8  |     | 6.5            |       | 7.4 | 1                                         |  |
|    |       | III    | 13 04 03.2       | 53.03    | 142.65    | 24 | 7.0 |                |       |     |                                           |  |
| 11 | 29.06 | Ι      | 23 02 31.4       | 51.85    | 103.12    | 36 |     | 5.7            | 6.1   | 5.9 | Район озера Байкал, Россия                |  |
|    |       | II     | 23 02 27.4       | 51.95    | 103.14    | 6  |     | 5.5            |       | 5.8 | · ·                                       |  |
|    |       | III    | 23 02 33.1       | 51.72    | 102.71    | 15 | 5.7 |                |       |     |                                           |  |
| 12 | 11.07 | Ι      | 21 46 43.1       | 21.97    | 99.25     | 33 |     | 6.3            | 6.6   | 6.9 | Мьянма, пограничная область Китая         |  |
|    |       | II     | 21 46 40.0       | 21.98    | 99.20     | 13 |     | 5.9            |       | 6.9 |                                           |  |
|    |       | III    | 21 46 50.7       | 21.89    | 99.22     | 15 | 6.8 |                |       |     |                                           |  |
| 13 | 18.10 | Ι      | 10 37 28.2       | 28.22    | 130.46    | 33 |     | 7.0            | 6.9   | 7.6 | Острова Рюкю, Япония                      |  |
|    |       | II     | 10 37 28.1       | 28.10    | 130.43    | 37 |     | 6.5            |       | 7.0 |                                           |  |
|    |       | III    | 10 37 38.7       | 28.06    | 130.18    | 19 | 7.1 |                |       |     |                                           |  |
| 14 | 19.10 | Ι      | 02 41 41.7       | 28.57    | 130.52    | 44 |     | 6.2            | 6.3   | 7.4 | Острова Рюкю, Япония                      |  |
|    |       | II     | 02 41 37.0       | 28.11    | 130.23    | 21 | _   | 6.2            |       | 6.9 |                                           |  |
|    |       | III    | 02 41 46.7       | 28.21    | 130.16    | 17 | 6.7 |                |       |     |                                           |  |
| 15 | 13.11 | I      | 08 43 14.5       | 56.09    | 114.58    | 20 |     | 6.1            |       | 6.1 | Восточнее озера Байкал, Россия            |  |
|    |       | II     | 08 43 15.4       | 56.08    | 114.49    | 26 |     | 5.8            |       | 5.9 |                                           |  |
| 16 | 22.11 | III    | 08 43 17.7       | 56.25    | 114.31    | 21 | 5.8 |                |       | 7.0 |                                           |  |
| 16 | 22.11 | I      | 04 15 16.5       | 29.00    | 34.78     | 33 |     | 6.6            | 7.2   | 7.2 | APE                                       |  |
|    |       |        | 04 15 11.9       | 28.81    | 34.80     | 10 | 7.2 | 0.1            |       | /.1 |                                           |  |
| 17 | 24.11 | Ш      | 04 15 20.2       | 29.07    | 34./3     | 18 | 1.2 | 67             | 67    | 60  | Viennes and a company Deserve             |  |
| 1/ | 24.11 | I      | 1/24 12.8        | 44.0/    | 149.15    | 29 |     | 0.0            | 0./   | 0.9 | курильские острова, Россия                |  |
|    |       | Ш<br>Ш | 1/24 11./        | 44.45    | 149.11    | 28 | 65  | 0.0            |       | 0.4 |                                           |  |
| 19 | 27.11 | T      | 1/24 18./        | 44.32    | 149.33    | 29 | 0.5 | 6.5            | 6.9   | 6.5 | Кирини окно острово Воссия                |  |
| 10 | 27.11 | I      | 15 52 59.8       | 44.02    | 149.23    | 20 |     | 5.0            | 0.0   | 6.2 | курильские острова, госсия                |  |
|    |       | ш      | 15 52 50.7       | 44.40    | 149.17    | 21 | 63  | 5.9            |       | 0.2 |                                           |  |
|    |       |        |                  |          | 1 7 1 1 1 |    |     | i              |       |     |                                           |  |

Таблица 1. Сведения о землетрясениях 1995 г.

|    | Дата,<br>дм | Ист. | г. t <sub>0</sub> ,<br>ч мин с | Эпицентр |        |          |     | Магни                   | итуды |     |                            |
|----|-------------|------|--------------------------------|----------|--------|----------|-----|-------------------------|-------|-----|----------------------------|
| №  |             |      |                                | φ°,N     | λ°,E   | h,<br>км | Mw  | MPSP,<br>m <sub>b</sub> | MPLP  | MS  | Район                      |
| 1  | 2           | 3    | 4                              | 5        | 6      | 7        | 8   | 9                       | 10    | 11  | 12                         |
| 19 | 30.11       | Ι    | 23 37 38.4                     | 44.47    | 149.35 | 38       |     | 6.5                     | 6.7   | 6.5 | Курильские острова, Россия |
|    |             | II   | 23 37 39.5                     | 44.25    | 149.36 | 54       |     | 5.8                     |       | 6.3 |                            |
|    |             | III  | 23 37 46.5                     | 44.48    | 149.26 | 22       | 6.2 |                         |       |     |                            |
| 20 | 03.12       | Ι    | 18 01 09.7                     | 44.77    | 149.35 | 36       |     | 7.3                     | 7.4   | 7.6 | Курильские острова, Россия |
|    |             | II   | 18 01 10.2                     | 44.53    | 149.31 | 46       |     | 6.5                     |       | 7.6 |                            |
|    |             | III  | 18 01 36.1                     | 44.82    | 150.17 | 26       | 7.9 |                         |       |     |                            |
| 21 | 03.12       | Ι    | 21 38 39.6                     | 45.02    | 150.23 | 32       |     | 6.6                     |       | 6.7 | Курильские острова, Россия |
|    |             | II   | 21 38 39.9                     | 44.59    | 150.19 | 50       |     | 5.8                     |       | 6.5 |                            |
|    |             | III  |                                |          |        |          | нет |                         |       |     |                            |
| 22 | 10.12       | Ι    | 22 23 15.9                     | 44.60    | 149.78 | 33       |     | 6.4                     | 6.5   | 6.6 | Курильские острова, Россия |
|    |             | II   | 22 23 12.2                     | 44.26    | 149.78 | 16       |     | 5.8                     |       | 6.4 |                            |
|    |             | III  | 22 23 21.1                     | 44.37    | 150.12 | 15       | 6.3 |                         |       |     |                            |

**Механизмы очагов** приведены для 21 землетрясения по разным данным: по знакам первых вступлений Р-волн – (1-3,9,10,12-14,16,22) из [5] и (15, 20) из [1]; по тензору момента центроида – (4-8,11,17-19) из [2]. (Номера землетрясений соответствуют табл. 1). Элементы этих механизмов приведены в [6], стереограммы механизмов в проекции нижней полусферы показаны на рис. 1.



Рис.1. Механизмы очагов землетрясений

1 – нодальные линии; 2,3 – оси главных напряжений, сжатия (2) и растяжения (3); зачернены области сжатия.

Как следует из табл. 1, наиболее сильные землетрясения года с магнитудой MS>6.5 произошли на относительно небольших глубинах и, в основном, в пределах Тихоокеанского пояса сейсмичности. Рассмотрим их по регионам.

Наиболее сильное землетрясение года (10) на территории России, происшедшее в северной части о. Сахалин, характеризуется преобладанием сдвиговых подвижек по крутым плоскостям близмеридионального и северо-западного простираний.

Многочисленная группа из семи сильных землетрясений (3, 9, 17–20, 22) произошла в районе Курильских островов. Механизмы их очагов сходны: обе нодальные плоскости имеют северо-восточное простирание, совпадающее с простиранием Курильской гряды; одна из них крутая со взбросовой подвижкой, другая пологая с подвижкой типа надвига. Все землетрясения возникли под действием сжимающего напряжения юго-восточного направления.

Следующая группа землетрясений имела место в районе о. Самар, Филиппины. Главный толчок (6), происшедший 21 апреля в 00<sup>b</sup>34<sup>m</sup> с MS=7.6, возник под действием субширотного сжимающего напряжения Р близгоризонтального залегания, ось растяжения Т – близвертикальна. Одна из возможных плоскостей разрыва в очаге – крутая, имеет почти меридиональное простирание и падает на восток, подвижка по ней представлена взбросом. Другая поверхность – пологая с северо-западным простиранием и падением на югозапад – имеет надвиговую подвижку. Механизмы очагов двух форшоков (4,5), а также двух афтершоков (7,8), подобны механизму главного толчка.

Четыре землетрясения относятся к району Японских островов – два близ о. Хонсю и два близ о. Рюкю. Механизм землетрясения, возникшего в северной части о. Хонсю (1), подобен описанным выше для района Курил, отличаясь от них лишь близмеридиональным простиранием обеих нодальных плоскостей. Механизм землетрясения (2), возникшего в южной части этого острова, резко отличается от него как типом подвижки (преобладают сдвиги), так и положением нодальных плоскостей, обе они крутые, одна северовосточного, другая северо-западного простирания. Оси главных напряжений близгоризонтальны, ось сжатия (Р) близширотна, ось растяжения (Т) близмеридиональна. Землетрясения, относящиеся к району о. Рюкю (главный толчок (13) и его афтершок (14)) произошли под действием растягивающих напряжений (Т) северо-западного направления, подвижки по обеим плоскостям близмеридионального простирания, крутой и пологой, представлены сбросами.

В континентальных условиях произошли четыре землетрясения: два в районе оз. Байкал (11, 15), одно – на границе Мьянмы с Китаем (12), одно – в Египте (16). Землетрясение (11) возникло близ югозападной части оз. Байкал, землетрясение (15) – восточнее его северной оконечности. Оба они характеризуются преобладанием растягивающих напряжений северо-западного направления и сбросовыми подвижками. В обоих очагах одна нодальная плоскость имеет близмеридиональную ориентацию, другая – северо-восточную. Механизм очага землетрясения (12) – сдвиговый, по обеим крутопадающим нодальным плоскостям северо-восточного и северо-западного простираний. Ось сжатия имеет меридиональное, а ось растяжения – широтное направление. Для землетрясения (16) отмечается сходство механизма очага с механизмом для (12), несмотря на то, что ориентация осей главных напряжений несколько меняется – в подвижках по обеим нодальным плоскостям преобладают сбросы, но в комбинации со сдвиговой компонентой. Сами нодальные плоскости имеют такие же северо-восточные и северо-западные простирания, но они более пологи.

Простирания, но они облее пологи. Динамические параметры рассчитывались по [7,8] на основе спектров продольных волн, записанных аппаратурой IRIS для двадцати землетрясений на станции "Обнинск" (1-13, 16-22), и двух на станциях "Арти" (14) и "Кисловодск" (15). Станционные спектры, исправленные за аппаратуру и условия распространения Р-волн, т. е. приведенные к очагу, показаны на рис. 2. Спектральные характеристики очагов (уровень  $\Sigma_0$  длиннопериодной ветви спектра, частота  $f_{\pi}$  точки перелома спектра, частота  $f_0$  его угловой точки) и их динамические параметры (M<sub>0</sub>,  $\Delta \sigma$ ,  $\eta \sigma$ , L, u) даны в табл. 2. Там же для сравнения приведены значения M<sub>0</sub> из [2] по данным HRVD. Станционные спектры, приведенные к очагу, показаны на рис. 2.



*Рис.* 2. Очаговые спектры Р-волн, записанные на станции "Обнинск" Нумерация дана в соответствии с табл. 1.

*Таблица* 2. Характеристики спектров Р-волн и динамические параметры очагов землетрясений 1995 г. по станции "Обнинск" (1-13, 16-22), "Арти" (14), "Кисловодск" (15)

| N⁰ | MS  | Δ°   | $\sum_{0*10^{-4}, M \cdot C}$ | f <sub>n</sub> *10 <sup>-2</sup> ,<br>Гц | f <sub>0</sub> *10 <sup>-2</sup> ,<br>Гц | М <sub>0</sub> *10 <sup>19</sup> ,<br>Н∙м, | M <sub>0</sub> *10 <sup>19</sup> ,<br>H·M,<br>(HRVD) | L*10 <sup>3</sup> ,<br>M | $\Delta \sigma * 10^{5}, H/m^{2}$ | ησ*10 <sup>5</sup><br>Η/м <sup>2</sup> | —<br>u,<br>M |
|----|-----|------|-------------------------------|------------------------------------------|------------------------------------------|--------------------------------------------|------------------------------------------------------|--------------------------|-----------------------------------|----------------------------------------|--------------|
| 1  | 7.2 | 65.9 | 2.5                           | 2.3                                      | 11.5                                     | 10.0                                       | 3.3                                                  | 50                       | 28                                | 32                                     | 0.64         |
| 2  | 7.2 | 66.8 | 0.2                           | 20.0                                     | 20.0                                     | 1.1                                        | 2.4                                                  | 24                       | 28                                | 127                                    | 0.70         |
| 3  | 7.0 | 65.2 | 0.6                           | 4.4                                      | 9.6                                      | 2.6                                        | 1.5                                                  | 52                       | 6                                 | 27                                     | 0.35         |
| 4  | 7.0 | 79.7 | 0.5                           | 7.2                                      | 17.4                                     | 4.2                                        | 2.3                                                  | 33                       | 41                                | 38                                     | 0.61         |
| 5  | 6.6 | 79.7 | 1.2                           | 4.0                                      | 9.8                                      | 5.7                                        | 2.0                                                  | 50                       | 16                                |                                        | 0.83         |
| 6  | 7.6 | 79.5 | 1.6                           | 6.6                                      | 14.4                                     | 7.7                                        | 6.6                                                  | 34                       | 69                                | 7                                      | 2.42         |

| N⁰ | MS  | $\Delta^{\circ}$ | $\sum_{0} * 10^{-4},$<br>M·C | f <sub>n</sub> *10 <sup>-2</sup> ,<br>Гц | f <sub>0</sub> *10 <sup>-2</sup> ,<br>Гц | М <sub>0</sub> *10 <sup>19</sup> ,<br>Н∙м, | $M_0 * 10^{19}, H \cdot M, H \cdot M, H R V D$ | L*10 <sup>3</sup> ,<br>M | $\Delta \sigma * 10^{5}, H/m^{2}$ | ησ*10 <sup>5</sup><br>Η/м² | ,<br>M |
|----|-----|------------------|------------------------------|------------------------------------------|------------------------------------------|--------------------------------------------|------------------------------------------------|--------------------------|-----------------------------------|----------------------------|--------|
| 7  | 7.0 | 79.8             | 0.4                          | 6.8                                      | 14.8                                     | 1.8                                        | 2.0                                            | 33                       | 18                                | 39                         | 0.60   |
| 8  | 6.9 | 79.5             | 0.4                          | 8.3                                      | 12.6                                     | 2.1                                        | 1.5                                            | 39                       | 12                                | 24                         | 0.50   |
| 9  | 6.9 | 64.5             | 0.9                          | 4.2                                      | 10.7                                     | 3.7                                        | 2.8                                            | 46                       | 13                                | 13                         | 0.64   |
| 10 | 7.7 | 56.6             | 0.5                          | 8.5                                      | 19.5                                     | 1.8                                        | 4.3                                            | 25                       | 40                                | 44                         | 1.05   |
| 11 | 5.9 | 38.4             | 0.02                         | 25.0                                     | 24.0                                     | 0.1                                        | 0.05                                           | 24                       | 2                                 | 16                         | 0.06   |
| 12 | 6.9 | 56.7             | 0.2                          | 7.6                                      | 30.2                                     | 0.6                                        | 1.9                                            | 16                       | 48                                | 88                         | 0.80   |
| 13 | 7.6 | 69.5             | 0.7                          | 5.8                                      | 21.4                                     | 2.9                                        | 5.7                                            | 23                       | 66                                | 240                        | 1.58   |
| 14 | 7.4 | 56.8*            | 1.3                          | 6.0                                      |                                          | 2.2                                        | 1.5                                            |                          |                                   |                            |        |
| 15 | 6.1 | 45.7*            | 0.3                          | 2.6                                      |                                          | 0.6                                        | 0.05                                           |                          |                                   |                            |        |
| 16 | 7.2 | 26.1             | 2.3                          | 11.5                                     | 21.9                                     | 3.1                                        | 7.2                                            | 22                       | 102                               | 45                         | 2.33   |
| 17 | 6.9 | 65.4             | 0.3                          | 5.5                                      | 9.6                                      | 1.0                                        | 0.8                                            | 52                       | 2                                 | 49                         | 0.13   |
| 18 | 6.5 | 65.5             | 0.1                          | 2.5                                      | 18.6                                     | 1.0                                        | 0.3                                            | 31                       | 12                                | 28                         | 0.16   |
| 19 | 6.5 | 65.7             | 0.1                          | 5.5                                      | 33.1                                     | 0.8                                        | 0.3                                            | 18                       | 48                                | 36                         | 0.39   |
| 20 | 7.6 | 65.4             | 3.5                          | 3.7                                      | 11.7                                     | 26.0                                       | 82                                             | 50                       | 73                                | 49                         | 1.66   |
| 21 | 6.7 | 65.6             | 0.6                          | 2.8                                      | 10.2                                     | 2.5                                        |                                                | 48                       | 8                                 | 10                         | 0.39   |
| 22 | 6.6 | 65.7             | 0.2                          | 5.2                                      | 19.0                                     | 0.6                                        | 0.3                                            | 26                       | 12                                | 29                         | 0.32   |

На рис. 3 представлена зависимость сейсмического момента  $M_0$ , полученного авторами по спектрам P-волн, от  $M_0$  по данным HRVD [2]. Уравнение ортогональной регрессии имеет вид:

$$\log M_0^{OBN} = (7.58 \pm 2.20) + (0.73 \pm 0.11) \log M_0^{HR}$$

Коэффициент корелляции г равен 0.84.

На рис. 4 показана зависимость сейсмического момента M<sub>0</sub> от моментной магнитуды Mw по данным HRVD [2]. Уравнение ортогональной регрессии имеет вид:

$$g M_0^{OBN} = (13.14 \pm 1.19) + (1.10 \pm 0.16) Mw^{HRV}$$

Коэффициент корреляции г равен 0.85.



*Рис. 3.* Зависимость величины M<sub>0</sub>, полученной авторами, от M<sub>0</sub> (HRVD)

*Рис. 4.* Зависимость величины M<sub>0</sub>, полученной авторами, от моментной магнитуды Mw(HRWD)

## Литература

- 1. Сейсмологический бюллетень (ежедекадный) за 1995 год. 1995-1996. / Отв. ред. О.Е. Старовойт. Обнинск: Издво ОМЭ ИФЗ РАН.
- 2. Bulletin of the International Seismological Centre for 1995. 1997. Ньюбери: Изд-во ISC.
- 3. Dzievonski A., Chou T. and Woodhouse J. 1981. Determination of earthquake source parameters from waveform data for stadies of global and regional seismisity // J. Geophys. Res. V.86. №B4. P. 2825-2852.
- 4. Захарова А.И., Чепкунас Л.С. 2000. Очаговые параметры сильных землетрясений мира // Землетрясения Северной Евразии в 1994 году. М.: Изд-во ОИФЗ РАН. С. 129-133.
- 5. Zakharova A.I., Poigina S.G., Rogozhin E.A. and Starovoit O.E. 1998. Earthquakes in Eurasia in 1995 // J. Earthq. Predict. Res. V.7. №2. P. 196-214.
- 6. Захарова А.И., Чепкунас Л.С. Землетрясения Земли в целом. См. раздел IV (Каталоги механизмов очагов) в наст. сб.
- 7. Аптекман Ж.Я., Дараган С.К., Долгополов Д.В., Захарова А.И., Зобин В.М., Коган С.Я., Корчагина О.А., Москвина А.Г., Поликарпова Л.А., Чепкунас Л.С. 1985. Спектры Р-волн в задаче определения динамических параметров очагов землетрясений. Унификация исходных данных и процедуры расчета амплитудных спектров // Вулканология и сейсмология. №2. С. 60-70.
- Аптекман Ж.Я., Белавина Ю.Ф., Захарова А.И., Зобин В.М., Коган С.Я., Корчагина О.А., Москвина А.Г., Поликарпова Л.А., Чепкунас Л.С. 1989. Спектры Р-волн в задаче определения динамических параметров очагов землетрясений. Переход от станционного спектра к очаговому и расчет динамических параметров очага // Вулканология и сейсмология. №2. С. 66-79.