ВУЛКАНИЧЕСКИЕ РАЙОНЫ КАМЧАТКИ

О.С. Чубарова*, С.Л. Сенюков**, В.И. Левина**

Расширенная и модернизированная сеть сейсмических станций Камчатки позволяет регистрировать слабые землетрясения в вулканических районах. Расположение активных вулканов и сейсмических станций Камчатки представлены на рис. 1.

Рис. 1. Карта активных вулканов Камчатки. На врезках показаны районы Северной группы вулканов (район №1) и Авачинско-Корякской группы вулканов (район №2).

1 – вулкан; 2 – сейсмическая станция; 3, 4 – изолиния К_{тіп} в районах №1 и №2 соответственно. Код и название вулкана: SL – Шивелуч*, KL – Ключевской*, TL – Плоский Толбачик*, IH– Ичинский, BZ – Безымянный*, KZ – Кизимен*, КМ – Комарова, КС – Кроноцкий*, GM – Гамчен, КR – Крашенинникова*, UZ – Узон*, BS – Большой Семлячик, КН – Кихпиныч*, MS – Малый Семлячик*, КІ – Карымский*, DZ – Дзензур*, JP – Жупановский*, КК – Корякский*, AV – Авачинский*, VL – Вилючинский*, GR – Горелый*, OP – Опала*, МТ – Мутновский*, КS – Ксудач*, JL – Желтовский, IL – Ильинский*, КО – Кошелевский*, КВ – Камбальный* (знаком * отмечены действующие вулканы). Код и название сейсмической станции: SVL – "Шивелуч", KLY – "Ключи", KRS – "Крестовский", SRD – "Срединный", KZY – "Козыревск", PDK – "Подкова", ZLN – "Зелёная", KMN – "Каменистая", AVH – "Авача", SMA – "Сомма, SDL – "Седловина", UGL – "Угловая".

^{*} Институт вулканической геологии и геохимии ДВО РАН

^{**} Камчатская Опытно-методическая сейсмологическая партия ГС РАН

Характеристика параметров сети станций дана в [1]. В 1994 г. сейсмическая активность наблюдалась в районах Северной (район №1) и Авачинско-Корякской (район №2) групп вулканов. Границы районов и изолинии энергетической представительности K_{Smin} в их пределах показаны на картах-врезках (рис. 1). Энергетический класс землетрясений $K_{S1,2}^{\Phi 68}$ (далее K_S) определялся по номограмме С.А. Федотова [1].

Методика обработки материалов наблюдений **Северной группы вулканов** изложена в [3-5]. При определении координат очагов землетрясений использовалась шестислойная модель земной коры [6], построенная с учётом данных глубинного сейсмического зондирования [7]. Рассматриваемый район №1 поделён на 11 зон: девять из них оконтурены, две зоны, расположенные вдоль подводных хребтов Срединного и Кумроч, – без контуров (рис. 2). В 1994 г. в районе №1 были определены гипоцентры 314 землетрясений с K_S=5-10, представленных по зонам в табл. 1.

Рис. 2. Карта эпицентров (а) и вертикальный разрез по линии А-А' в полосе шириной 80 км (б) для землетрясений района №1

1- энергетический класс K_S; 2 – глубина h гипоцентра, км; 3 – сейсмоактивная зона; 4 – сейсмическая станция; 5 – активный вулкан (SL – Шивелуч, KL – Ключевской, US – Ушковский, BZ – Безымянный, TL – Плоский Толбачик, N –

Северный прорыв Большого трещинного Толбачинского извержения (БТТИ), S – Южный прорыв БТТИ); 6 – номер зоны; 7 – линия разреза; 8 – изолиния рельефа местности (1000, 1800, 2600 м).

N C-	2	Ks						N_{Σ}			$\Sigma E * 10^8$,
JN⊇	зона	5	6	7	8	9	10	Всего	h<5км	h≥5км	Дж
1	Вулкан Шивелуч	-	26	19	6	-	-	51	49	2	6.66
2	Ключи	1	2	-	-	-	1	4	-	4	50.16
3	Центральная	126	53	3	-	-	-	182	29	153	1.38
4	Подкова	3	6	3	-	1	-	13	1	12	8.52
5	Апахончич	-	2	-	-	-	-	2		2	0.02
6	Вулкан Безымянный	2	1	2	-	-	-	5	3	2	0.38
7	Восточная Козыревская	1	-	1	2	-	-	4	1	3	2.18
8	Западная Козыревская	1	-	-	-	-	-	1	-	1	0.002
9	Вулкан Плоский Толбачик	2	10	4	-	-	-	16	5	11	0.34
10	Хребет Срединный	-	4	13	4	2	-	23	2	21	50.15
11	Хребет Кумроч	1	9	3	-	-	-	13	6	7	0.43
	Весь район	137	113	48	12	3	1	314	96	218	120.23

Таблица 1. Распределение числа землетрясений по энергетическим классам K_S, глубине h и суммарная сейсмическая энергия ΣЕ по сейсмоактивным зонам района №1

Примечание: Зоны 3-5 образуют сейсмоактивную зону вулкана Ключевской.

Наибольшее число землетрясений было зарегистрировано в зоне 3 табл. 1 (Центральная) в пределах постройки Ключевского вулкана (рис. 1, табл. 1). Землетрясения этой зоны сконцентрировались в двух глубинных горизонтах – 4-2 км и 20-30 км (рис. 2,б). Землетрясения с h=20-30 км локализовались непосредственно под вулканом и отличались длинными периодами колебаний. По численности они составили около половины каталога - 141 событие из 314. Особенность этих землетрясений - практически идентичная форма записи и очень узкий энергетический диапазон (K_s=5-6). Такого типа землетрясения начали регистрироваться в конце февраля 1994 г., число их достигло максимума в конце августа – начале сентября, непосредственно перед извержением Ключевского вулкана (с 7 сентября по 2 октября). После окончания извержения и до конца года таких землетрясений отмечено не было. Ход извержения Ключевского вулкана и особенности его этапов подробно описаны в [8]. Вершинное эффузивноэксплозивное извержение вулкана Ключевской в 1994 г. относится к числу наиболее мощных исторических извержений этого вулкана. До начала извержения на вулкане регистрировались землетрясения во всем диапазоне глубин, но с конца февраля начало возрастать количество глубоких (h=20-30 км) длиннопериодных событий. Начало извержения сопровождалось быстрым ростом вулканического дрожания. В период извержения выделение землетрясений на фоне дрожания было затруднено, поэтому вероятны пропуски в каталоге. За сутки до пароксизмальной фазы извержения (1 октября) максимальная амплитуда вулканического дрожания на сейсмической станции "Крестовский" достигла 5 мкм, во время этой фазы превысила 15 мкм. Пароксизмальная фаза извержения длилась 9-10 часов, после ее окончания уровень дрожания резко упал и до конца года не превышал фоновых значений. В октябре-декабре в районе вулкана регистрировались землетрясения только с h<5 км.

В начале 1994 г. вулкан Шивелуч (зона 1) продолжал находиться в стадии роста экструзивного купола. Описание активности вулкана дано в [9]. Интенсивная сейсмическая деятельность, связанная с активностью на куполе (поверхностные землетрясения и вулканическое дрожание), наблюдалась в январе-мае 1994 г.

В районе вулкана Безымянный (зона 6) определены гипоцентры очагов 5 землетрясений.

Кроме этого, по данным сейсмической станции "Зелёная" в течение января-августа регистрировались более слабые землетрясения, а также сейсмические сигналы, обусловленные обрушениями на куполе. Заметной эксплозивной активности отмечено не было [10].

Кроме сейсмической активности в зонах действующих вулканов Ключевского, Безымянного, Шивелуча и Плоского Толбачика, в течение года отмечены группы и отдельные землетрясения в других зонах – Восточной Козыревской, Ключи, Срединного хребта и хребта Кумроч (табл. 1, рис. 2). При этом только одно из четырёх наиболее сильных (K_s=9-10) землетрясений произошло в непосредственной близости от активного вулкана (на северовосточном склоне Ключевского вулкана в зоне Подкова), остальные отмечены в Срединном хребте и в зоне Ключи (рис. 2).

Обработка первичных материалов и составление каталога Северной группы вулканов производились сотрудниками КОМСП ГС РАН О.Н. Савченко и С.Л. Толокновой под руководством В.Т. Гарбузовой.

Определение параметров землетрясений Авачинско-Корякской группы вулканов (район №2) базировалось на данных локальной телеметрической сети, состоящей в 1994 г. из четырёх станций (рис. 1). Окончательная обработка землетрясений осуществлялась в отложенном режиме, после оцифровки магнитных записей с экрана компьютера с помощью программ обработки, созданных в КОМСП Д.В. Дрозниным. Координаты гипоцентров для Корякского и Авачинского вулканов рассчитывалось по программе Ю.В. Мельникова [11] с использованием двух разных одномерных скоростных моделей среды, установленных путём перебора большого количества различных моделей. При переборе моделей изменялся только разрез, а все данные по вступлениям Р и S волн для набора как минимум из 50 землетрясений для каждого вулкана не изменялись. Перебор осуществлялся с учётом получения минимальных отклонений времён вступления Р- и Sволн на всех сейсмических станциях, а также с использованием скоростного разреза, полученного методом сейсмического просвечивания на профиле, проходящем через Авачинский вулкан [12]. Полученные скоростные разрезы представлены в табл. 2. Необходимость введения в обработку новых разрезов объясняется следующими причинами: во-первых, используемый ранее разрез [13] существенно отличался от реального; во-вторых детальный анализ координат гипоцентров и разности времён вступления Р-волн на станциях и времени в очаге показал [14], что точность определения была явно неудовлетворительная. Для сейсмических событий, расположенных вне этих двух вулканов (приблизительно по изолинии рельефа 400 м) использовался обычный региональный годограф [15].

N⁰	h,	8	ı	б			В				
	КМ	υ_P	υ_{s}	υ_{P1}	υ_{P2}	υ_{S1}	υ_{S2}	υ_{P1}	υ_{P2}	υ_{S1}	υ_{S2}
1	0	2.0	1.2	3.0		1.85		1.7		1.0	
2	1.5							2.1	4.0	1.05	2.0
3	4.0	4.6	2.56	3.5	5.0	2.0	2.9				
4	4.5							4.0	5.0	2.0	2.5
5	6.0							5.0	5.05	2.75	2.8
6	7.0			5.0	6.0	2.9	3.5				
7	8.0	5.1	2.95					5.05	5.1	2.8	2.85
8	12.0			6.0	7.0	3.5	4.05				
9	15.0	5.6	2.95	7.0	7.1	4.05	4.10	5.6		2.95	
10	30.0	7.1	4.1	7.1	7.2	4.10	4.15	7.1		4.1	

Таблица 2. Скоростные разрезы для определения гипоцентров: a) – старый Авачинский и Корякский по [13]; б) – новый Авачинский; в) – новый Корякский

Примечание. Если в слое указаны две скорости (v_{P1} и v_{P2}), то их значения изменяются по линейной зависимости.

Вулканы Авачинский и Корякский расположены в 30 км к северу от самых больших

городов Камчатки и поэтому из всех вулканов Курило-Камчатского вулканического пояса представляют наибольшую опасность для населения. Общая карта распределения эпицентров землетрясений этого района и вертикальные разрезы по линиям А-В и С-D представлены на рис. 3. В табл. 3 дано распределение землетрясений по классам отдельно для каждого вулкана.

Рис. 3. Карта эпицентров (а) и вертикальные разрезы по линиям А-В (б) и С-D (в) для землетрясений района №2 1 – энергетический класс K_S; 2 – глубина h гипоцентра, км; 3 – сейсмическая станция; 4 – изолиния рельефа местности.

Вулкан	Ks							
-	4.0-5.5	5.6-6.5	≥6.6					
Авачинский	20	2	0					
Корякский	76	17	5					

Таблица 3. Распределение числа землетрясений района №2 по энергетическим классам К_S для вулканов Авачинский и Корякский

Рассмотрим сейсмичность вулканов Авачинский и Корякский по отдельности, проведя условно границу раздела по перевалу между ними.

Для Авачинского вулкана заметной вулканической активности отмечено не было, сейсмичность была фоновая. Практически все землетрясения, приуроченные к Авачинскому вулкану, произошли в пределах его постройки выше уровня моря (рис. 3,б,в). Графики изменения во времени числа землетрясений, представленные на рис. 4, указывают на неравномерность течения сейсмического процесса.

Локальная сеть в районе Авачинско-Корякской группы вулканов является односторонней по отношению к Корякскому вулкану, поэтому точность определения координат и особенно глубины землетрясений здесь в несколько раз хуже, чем для Авачинского вулкана. В 1994 г. под Корякским вулканом был зафиксирован рой слабых вулканических землетрясений (рис. 3), который никак не проявился на поверхности. В этом рое произошла основная масса событий, зафиксированных в Авачинско-Корякской группе вулканов в 1994 г.

Рис. 4. Графики распределения во времени параметров сейсмичности Авачинского вулкана: а) – кумулятивное число событий; б) – кумулятивная энергия; в) – энергетический класс K_S; г) – глубина h гипоцентров, км.

Подробный анализ сейсмической активизации вулкана Корякский проведен в [16]. На графиках изменения во времени параметров сейсмичности (рис. 5) хорошо видно начало, периоды наибольшей активности и окончание роя Корякских событий.

Рис. 5. Графики распределения во времени параметров сейсмичности Корякского вулкана:

a) – кумулятивное число событий; б) – кумулятивная энергия; в) – энергетический класс K_S; г) – глубина h гипоцентров, км.

В заключение необходимо поблагодарить коллектив Отдела РТСС КОМСП, чей труд позволил провести исследование землетрясений в Авачинско-Корякской группе вулканов, а также отдельно И.Н. Нуждину и Т.Ю. Кожевникову за участие в создании базы данных вулканических землетрясений и оформлении рисунков.

Литература

- 1. Гордеев Е.И., Левина В.И., Чебров, В.Н., Иванова Е.И., Шевченко Ю.В., Степанов В.В. 1999. Землетрясения Камчатки и Командорских островов // Землетрясения Северной Евразии в 1993 году. М.: НИА-Природа. С. 102-114.
- 2. Федотов С.А. 1972. Энергетическая классификация Курило-Камчатских землетрясений и проблема магнитуд. М.: Наука. 116 с.
- 3. **Чубарова О.С., Гарбузова В.Т., Горельчик В.И. 1999.** Землетрясения района Северной группы вулканов Камчатки // Землетрясения Северной Евразии в 1993 году. М.: НИА-Природа. С. 115-117.
- 4. Сургучев П.И., Горельчик В.И., Левина В.И., Мячкин В.И. 1992. Массовое определение гипоцентров землетрясений на ЭВМ в районе Северной группы вулканов Камчатки // Вулканология и сейсмология. №2. С. 50-63.
- 5. Горельчик В.И., Чубарова О.С., Гарбузова В.Т. 1988. Сейсмичность района Северной группы вулканов Камчатки, 1971-1983 гг. // Вулканология и сейсмология. №1. С. 90-100.
- 6. Горельчик В.И., Степанов В.В. 1976. Сейсмичность района Северной группы вулканов Камчатки в 1971-1972 гг. // Глубинное строение, сейсмичность и современная деятельность Ключевской группы вулканов. Владивосток: Наука. С. 108-118.
- 7. Балеста С.Т., Иванов Б.В., Утнасин В.К., Аносов Г.И. 1976. Строение земной коры района Ключевской группы вулканов, особенности тектоники и вулканизма // Глубинное строение, сейсмичность и современная деятельность Ключевской группы вулканов. Владивосток: Наука. С. 7-16.
- 8. Озеров А.Ю., Карпов Г.А., Дрознин В.А., Двигало В.Н., Демянчук Ю.В., Иванов В.В., Белоусов А.Б., Фирстов П.П., Гаврилов В.А., Ящук В.В., Округина А.М. 1996. Динамика извержения Ключеевского вулкана 7 сентября 2 октября 1994 г. (Камчатка) // Вулканология и сейсмология. №5. С. 3 16.
- 9. Федотов С.А., Хубуная С.А., Жаринов Н.А., Богоявленская Г.Е., Муравьев Я.Д., Иванов В.В., Демянчук Ю.В., Фазлулин С.М., Новгородцева Т.Ю., Двигало В.Н., Будников В.А. 1995. Извержения вулканов Шивелуч и Ключевской в 1993 г. и их влияние на окружающую среду // Геология и геофизика. Т. 36. №8. С. 117-131.
- 10. Белоусов А.Б., Фирстов П.П., Жданова Е.Ю. 1998. Извержения вулкана Безымянный в 1993-1995 гг. // Вулканология и сейсмология. №3. С. 60-70.
- 11. Мельников Ю.Ю. 1990. Пакет программ для определения координат гипоцентров землетрясений Камчатки на ЭВМ.// Вулканология и сейсмология. №5. С.103-112.
- 12. Гонтовая Л.И., Ефимова Е.А., Костюкевич А.С., Пийп В.Б. 1990. Сейсмический разрез вулкана Авачинский по данным КМПВ-ГСЗ // Физика Земли. №3. С. 73-81.
- 13. Балеста С.Т. 1966. О скоростном разрезе вулканогенных образований Авачинского вулкана // Вулканизм и геохимия его продуктов. М.: Наука. С. 112-115.
- 14. Гонтовая Л.И., Ризниченко О.Ю., Сенюков С.Л., Степанова М.Ю., Ящук В.В. 1998. Об упругих свойствах земной коры в районе Авачинского вулкана на Камчатке // Вулканология и сейсмология. №4-5. С. 79-87.
- 15. **Кузин И.П. 1974.** Фокальная зона и строение верхней мантии в районе Восточной Камчатки. М.: Наука. 132 с.
- Гордеев Е.И., Сенюков С.Л. 1998. Сейсмическая активизация вулкана Корякский в 1994 г.: гибридные сейсмические события и их применение для оценки вулканической опасности // Вулканология и сейсмология. №4-5. С. 112-126.