УДК 550.348

ОЧАГОВЫЕ ПАРАМЕТРЫ СИЛЬНЫХ ЗЕМЛЕТРЯСЕНИЙ МИРА А. И. Захарова, Л. С. Чепкунас

Для 17 сильных землетрясений мира 1994 г., в основном, с магнитудой MS более 6.5, рассмотрены основные параметры очагов по публикациям разных центров. Они представлены в табл. 1, где I – Оперативный сейсмологический бюллетень ОМЭ ИФЗ РАН [1], II, III – Earthquake Data Report [2]. Параметры t_0 , ϕ , λ , h в I и II относятся к начальной фазе развития сейсмического процесса в очаге и получены по временам первых вступлений продольных волн P на основе годографа Джеффриса-Буллена. Относительно небольшие расхождения значений этих параметров можно объяснить разными системами наблюдений в Службах России и США. Вместе с тем наблюдаются устойчивые различия в значениях магнитуд MS по I и II до 0.3 единицы MS и более, как отмечалось ранее [3,4]. В III параметры t_0 , ϕ , λ , h соответствуют максимальной фазе процесса в очаге и получены по методу тензора момента центроида [5], поэтому их отклонения от таковых в I и II представляются вполне объяснимыми.

Все рассматриваемые землетрясения, кроме одного, приурочены к Тихоокеанскому сейсмическому поясу, причем большинство – к его восточной части. Два из них произошли в районе о. Хонсю Японии, семь – в Курило-Камчатской зоне России, два – в районе о. Тайвань, три – в Индонезии, одно – на Филиппинах. Одно землетрясение возникло у побережья Северной Калифорнии и одно – в Трансазиатском сейсмическом поясе в пределах территории России (восточнее оз. Байкал).

N⁰	Дата,	Ист.	t ₀ ,	Эпицентр		h,	Магнитуды			Район	
	д м		ч мин с	φ°,N	λ°,E	КМ	MPSP,	MPLP	MS		
1	21.01	I II III	02 24 32.3 02 24 29.96 02 24 37.3	1.20 1.01 1.20	127.86 127.73 127.80	33 19.9 15	6.6 6.2	7.1	6.9 7.2	Остров Хальмахера, Индонезия	
2	15.02	I II III	17 07 47.6 17 07 43.8 17 07 51.7	-4.25 -4.97 -5.15	104.36 104.30 104.27	33 23.1 16.2	6.4 5.9	6.5	7.0 7.0	Юг острова Суматры, Индонезия	
3	08.04	I II III	01 10 43.6 01 10 40.84 01 10 46.1	40.62 40.61 40.62	143.65 143.68 143.94	33 13.3 15.0	6.3 6.0	6.6	6.8 6.3	У побережья острова Хонсю, Япония	
4	24.05	I II III	04 00 47.3 04 00 42.18 04 00 47.8	24.24 23.96 23.94	122.49 122.45 122.43	47 16.3 15.0	6.4 6.2	6.6	7.0 6.7	Район острова Тайвань	
5	02.06	I II III	18 17 36.6 18 17 34.02 18 18 15.8	-10.29 -10.48 -11.03	113.09 112.83 113.04	33 18.4 15.0	5.9 5.7	6.8	7.1 7.2	Южнее острова Ява, Индонезия	
6	14.08	I II III	00 46 22.4 00 46 22.4 00 46 26.4	44.46 44.66 45.41	150.06 150.13 149.73	41 33 15.0	6.6 5.9	6.5	6.2 5.8	Район Курильских островов, Россия	
7	18.08	I II III	04 42 58.2 04 42 59.6 04 43 03.2	44.56 44.67 44.68	150.03 150.17 150.19	33 33 15.0	6.9 6.1	6.7	6.8 6.5	Район Курильских островов, Россия	
8	20.08	I II III	04 38 52.1 04 38 51.6 04 38 56.3	44.63 44.67 44.61	149.04 149.14 149.19	41 33 18.0	6.8 6.1	6.6	6.3 6.0	Курильские острова, Россия	

Таблица 1. Сведения о землетрясениях 1994 г.

ЗЕМЛЕТРЯСЕНИЯ	СЕВЕРНОЙ	ЕВРАЗИИ В	1994 г.

N⁰	№ Дата,		t ₀ ,	Эпицентр		h,	Магнитуды		ы	Район	
	д м		ч мин с	φ°,N	λ°,E	КМ	MPSP, m _b	MPLP	MS		
9	21.08	I II III	15 56 00.6 15 56 01.8 15 56 03.3	56.62 56.66 56.90	117.82 117.82 117.95	29 33 27.5	6.2 5.7	6.3	6.3 5.8	Восточнее озера Байкал, Россия	
10	28.08	I II III	18 37 23.8 18 37 19.7 18 37 28.0	44.89 44.71 44.85	149.99 150.17 150.23	50 14 15.0	6.6 6.0	6.7	6.8 6.5	Курильские острова, Россия	
11	01.09	I II III	15 15 51.8 15 15 53.2 15 15 58.7	40.29 40.41 40.28	-125.77 -125.65 -125.72	10 10 15.0	7.0 6.6	6.8	7.0 7.0	У побережья Северной Калифорнии	
12	16.09	I II III	06 20 22.1 06 20 18.3 06 20 22.1	23.30 22.55 22.51	118.49 118.74 118.53	14 12 19.1	7.0 6.5	7.1	7.0 6.7	Район острова Тайвань	
13	04.10	I II III	13 22 59.1 13 22 58.3 13 23 27.3	43.60 43.71 43.64	147.25 147.33 147.44	50 33 59.0	7.6 7.4	7.8	8.4 8.1	Курильские острова, Россия	
14	09.10	I П Ш	07 55 40.7 07 55 38.0 07 55 49.3	43.69 43.90 43.91	147.85 147.90 147.80	52 23 29.6	7.1 6.5	7.3	7.6 7.0	Курильские острова, Россия	
15	14.11	I II III	19 15 31.1 19 15 30.7 19 15 37.1	13.75 13.53 13.54	121.04 121.09 121.25	33 33 15.0	6.3 6.1	6.6	7.0 7.1	Остров Минданао, Филлипины	
16	15.11	I II III	20 39 40.2 20 39 40.3 20 39 42.3	47.65 47.46 47.26	154.87 155.10 155.01	33 33 15.0	6.2 5.7	6.4	6.4 6.0	Курильские острова, Россия	
17	28.12	I II III	12 19 26.1 12 19 23.6 12 19 57.5	40.59 40.45 40.40	143.29 143.49 143.12	51 33 34.0	6.5 6.4	7.5	7.9 7.5	У побережья острова Хонсю, Япония	

Для всех 17 землетрясений рассчитаны механизмы очагов по знакам первых вступлений Рволн [6, 8] на ряде сейсмических станций России и Мира. Элементы механизмов очагов этих землетрясений помещены в разделе "Каталоги механизмов" настоящего сборника. Стереограммы механизмов в проекции нижней полусферы даны на рис. 1. Как видно, в очагах двух землетрясений из района о. Хонсю, Япония (№№ 3,17 в табл.1), семи землетрясений Курило-Камчатской зоны (№№ 6-8,10,13,14,16) возникли подвижки взбросового типа по плоскостям северо-северо-восточного простирания под действием сжимающих напряжений, ориентированных в юго-восточном направлениии. Такой же тип подвижек отмечается в очаге землетрясения из района Индонезии, о. Ява (№5), но по плоскостям северо-западного простирания. Механизмы очагов землетрясений в районах оз. Байкал (№9) и о. Тайвань (№№ 4,12) обусловлены растягивающими напряжениями. В первом случае в движении по обеим плоскостям северовосточного простирания преобладают сбросы, во втором случае наблюдаются сбросы, осложнённые сдвиговой компонентой по плоскостям северо-восточного, северо-западного и близширотного простирания. Практически чистые сдвиги по круто-падающим плоскостям северовосточного и северо-западного простирания наблюдаются в очагах землетрясений Индонезии на о. Хальмахера и о. Суматре (№№ 1,2), в Калифорнии (№11) и на Филиппинах (№15).

Спектральные характеристики очагов (уровень Σ_0 длиннопериодной ветви спектра, частота f_n точки перелома спектра, частота f_0 угловой точки спектра) и их динамические параметры (сейсмический момент M_0 , сброшенное $\Delta \sigma$ и кажущееся $\eta \sigma$ напряжения), а также характеристики разрыва в очагах (длина L и подвижка u) рассчитывались по записям цифровой аппаратурой IRIS

на станции "Обнинск" по методике [7, 8]. Станционные спектры, приведенные к очагу, показаны на рис. 2, значения параметров представлены в табл. 2.

Рис. 1. Механизмы очагов землетрясений

1 – нодальные линии; 2,3 – оси главных напряжений, сжатия (2) и растяжения (3); зачернены области сжатия.

№	MS	Δ°	$\Sigma_0 * 10^{-4},$ M·C	f _n *10 ⁻² , Гц	f ₀ *10 ⁻² , Гц	M ₀ *10 ¹⁹ , Н∙м	L*10 ³ , M	$\Delta \sigma * 10^5, H/m^2$	ησ*10 ⁵ , Η/м ²	— и, м
1	69	89.8	03	13.5	21.4	2.0	28	32	25	0.93
2	7.0	81.0	0.2	69	22.9	11	22	36	63	0.93
3	6.8	66.3	0.3	5.6	12.0	1.2	41	6	29	0.26
4	7.0	68.2	0.3	1.0	17.0	2.5	34	22	64	0.34
5	7.1	90.8	1.4	4.5	5.9	10.0	54	22	10	1.25
6	6.2	66.0	0.1	2.4	15.1	0.3	32	3	14	0.11
7	6.8	65.9	0.4	4.0	14.4	1.5	34	13	23	0.47
8	6.3	65.4	0.1	2.3	11.0	0.6	44	2	11	0.10
9	6.3	43.1	0.1	2.6	17.4	0.4	28	6	16	0.18
10	6.8	65.6	0.5	2.7	13.8	3.4	42	16	24	0.31
11	7.0	83.8	0.4	13.8	16.2	2.4	30	31	29	0.97
12	7.0	66.7	0.6	1.8	17.4	2.4	28	38	29	1.11
13	8.4	65.5	28.8	2.6	10.0	210.0	58	377	96	9.94
14	7.6	65.7	3.2	2.3	7.9	24.0	73	22	53	0.72
15	7.0	75.7	0.3	6.8	18.2	1.4	27	25	50	0.70
16	6.4	65.2	0.1	2.3	12.6	0.6	39	4	15	0.14
17	7.9	66.1	6.3	4.4	11.0	27.0	44	111	132	2.22

Таблица 2. Характеристики спектров Р-волн и динамические параметры очагов землетрясений 1994 г. по станции "Обнинск"

Рис. 2. (продолжение) Очаговые спектры Р-волн, записанные на станции "Обнинск"

Литература

- 1. Сейсмологический бюллетень за 1994 г. (ежедекадный). 1994. // Отв. ред. О.Е. Старовойт, А.И. Захарова. Обнинск: ОМЭ ИФЗ РАН.
- 2. Earthquake Data Report. Jan.-Dec. 1994. // U.S. Department of the Interior Geological Survey.
- 3. Захарова А.И., Чепкунас Л.С. 1997. Спектральные и динамические характеристики очагов сильных землетрясений мира // Землетрясения Северной Евразии в 1992 году. М: Геоинформмарк. С. 120-126.
- 4. Захарова А.И., Чепкунас Л.С. 1999. Очаговые параметры сильных землетрясений мира // Землетрясения Северной Евразии в 1993 году. М:. НИА-Природа. С. 136-139.
- 5. Dzievonski A., Chou T. and Woodhouse J. 1981. Determination of earthquake source parameters from waveform data for stadies of global and regional seismisity // J. Geophys. Res. V. 86. №B4. P. 2825-2852.
- 6. Старовойт О.Е., Чепкунас Л.С., Аптекман Ж.Я., Бармин М.П. 1983. Об определении механизма очагов на ЭВМ ЕС-1030 // Физика сейсмических волн и внутреннее строение Земли. М.: Наука. С. 86-91.
- 7. Аптекман Ж.Я., Дараган С. К., Долгополов Д. В., Захарова А.И., Зобин В.М., Коган С.Я., Корчагина О.А., Москвина А.Г., Поликарпова Л.А., Чепкунас Л.С. 1985. Спектры Р-волн в задаче определения динамических параметров очагов землетрясений. Унификация исходных данных и процедуры расчёта амплитудных спектров // Вулканология и сейсмология. №2. С. 60-70.
- 8. Аптекман Ж.Я., Белавина Ю.Ф., Захарова А.И., Зобин В.М., Коган С.Я., Корчагина О.А., Москвина А.Г., Поликарпова Л.А., Чепкунас Л.С. 1989. Спектры Р-волн в задаче определения динамических параметров очагов землетрясений. Переход от станционного спектра к очаговому и расчет динамических параметров очага // Вулканология и сейсмология. №2. С. 66-79.