ДОПОЛНИТЕЛЬНЫЕ ПАРАМЕТРЫ ОЧАГОВ ЗЕМЛЕТРЯСЕНИЙ

ОЧАГОВЫЕ ПАРАМЕТРЫ СИЛЬНЫХ ЗЕМЛЕТРЯСЕНИЙ МИРА

А. И. Захарова, Л. С. Чепкунас

Рассмотрены 10 сильных землетрясений мира. Для всех найдены решения механизмов очагов по данным ряда сейсмических станций, для 9 – определены очаговые параметры по записям станции "Обнинск". При этом все исследованные события приурочены к Тихоокеанскому сейсмическому поясу, причем большинство – к его восточной части: два землетрясения произошли на Камчатке, пять в Японии (три близ острова Хоккайдо, одно – близ острова Хонсю, одно – на островах Рюкю), одно на Аляске, одно близ Марианских островов. Одно землетрясение произошло в западной части Тихоокеанского пояса - в Мексике. В табл. 1 представлены основные параметры землетрясений по данным сейсмических служб России [1] – I и США [2] – II, III, соответственно. Как и прежде [4], значения параметров t₀, ϕ , λ , h для I и II получены по временам первых вступлений продольных P-волн на основе годографа Джеффриса-Буллена. Параметры III получены по методу СМТ [3].

№	Дата,	Ист.	t ₀ ,	Эпицентр		h,	Магнитуды		цы	Район	
	д м		ч мин с	ч мин с ф°, N		КМ	MPSP. MPLP N		MS		
							m _b *				
1.	15.01	Ι	11 05 58.2	42.99	144.26	82	6.9	7.5	7.4	Район о-ва Хоккайдо, Япония	
		Π	11 06 05.95	43.300	143.691	102.2	6.9*	-	-		
		III	11 06 15.6	43.06	144.29	100.0	-	-	-		
2.	07.02	Ι	13 27 49.6	37.88	137.24	66	6.6	6.9	6.8	Западное поб. о-ва Хонсю, Япония	
		Π	13 27 42.01	37.634	137.245	10.6	6.3*	-	6.2		
		III	13 27 49.4	37.74	137.21	15.0	-	-	-		
3.	13.05	Ι	11 59 47.9	55.07	-160.40	44	6.7	6.7	6.9	Полуостров Аляска	
		Π	11 59 49.25	55.177	-160.458	32.3	6.4*	-	6.8		
		III	11 59 56.5	54.70	-159.95	40.7	-	-	-		
4.	08.06	Ι	13 03 34.0	51.25	157.77	54	6.5	6.8	7.4	Восточнее поб. Камчатки	
		Π	13 03 36.48	51.218	157.829	70.6	6.4*	-	-		
		III	13 03 57.4	51.36	158.75	45.9	-	-	-		
5.	12.07	Ι	13 17 11.3	42.79	139.21	20	7.0	8.0	7.9	Район о-ва Хоккайдо, Япония	
		Π	13 17 11.96	42.851	139.197	16.7	6.6*	-	7.6		
		III	13 17 36.9	42.71	139.2	16.5	-	-	-		
6.	07.08	Ι	00 00 34.3	26.74	125.54	126	6.4	-	6.3	Северо-восточнее о-ва Тайвань	
		Π	00 00 37.07	26.585	125.612	155	6.0*	-	-	-	
		III	00 00 42.2	26.68	125.84	164.9	-	-	-		
7.	07.08	Ι	19 42 44.2	42.04	139.80	33	6.4	6.8	6.6	Район о-ва Хоккайдо, Япония	
		II	19 42 41.91	41.985	139.839	13.8	6.2*	-	6.1		
		III	19 42 48.1	42.00	139.79	26.9	-	-	-		
8.	08.08	Ι	08 34 23.1	13.12	144.72	46	7.3	7.6	7.8	Марианские острова	
		Π	08 34 24.93	12.982	144.801	59.3	7.1*	-	-		
		III	08 34 49.3	13.06	145.31	59.3	-	-	-		
9.	10.09	Ι	19 12 54.4	14.73	-92.69	36	6.4	7.2	7.3	Побережье Чьяпас, Мексика	
		Π	19 12 54.62	14.217	-92.645	34.1	6.2*	-	7.3		
		III	19 13 03.2	14.41	-92.99	29.1	-	-	-		
10.	13.11	Ι	01 18 06.2	51.95	158.67	52	6.5	6.8	7.1	Восточнее поб. Камчатки	
		Π	01 18 04.18	51.934	158.647	34	6.5*	-	7.0		
		III	01 18 16.3	52.00	159.27	54.2	-	-	-		

Таблица 1. Сведения о землетрясениях 1993 г.

Наблюдаемые расхождения между параметрами t_0 , ϕ , λ , h в I и II (табл. 1), в основном, не превышают случайных ошибок. Как и ранее [4], имеются некоторые тенденции запаздывания

времени в очаге по I относительно II. В отдельных случаях эти расхождения возможно связаны с системами наблюдений сейсмических служб России и США, отличающихся друг от друга. Повидимому, эта проблема требует специального исследования при использовании достаточно большого массива данных. Параметры t_0 , ϕ , λ , h в III соответствуют максимальной фазе сейсмического процесса, а в I и II – его начальной фазе. Поэтому их расхождения вполне закономерны.

Анализ значений MS по I и II также показывает их различия, причем, достаточно устойчивые. В подавляющем числе случаев значения MS по I завышены относительно MS по II на 0.3 единицы магнитуды и более. Этот эффект, возможно, связан с методическими приемами расчета MS в указанных службах – имеется в виду учет глубины, эпицентральных расстояний, калибровочных кривых и др. [5].

Для получения очаговых параметров использовались характеристики амплитудных спектров смещений Р-волн. Они рассчитывались по записям цифровой аппаратуры IRIS на станции "Обнинск" по методике [6,7]. Следует отметить, что использование записей цифровой аппаратурой вместо аналоговой позволяет провести более точную оценку сейсмических моментов М₀. Как показано в [4], это особенно важно при рассмотрении сильнейших событий, так как в случае аналоговой аппаратуры для них занижаются значения спектральных плотностей в области длинных периодов.

Спектральные характеристики очагов (уровень длинопериодной ветви спектра Σ_0 , частота точки перелома спектра f_n , угловая точка спектра f_0) и их динамические параметры (сейсмический момент M_0 , сброшенное и кажущееся напряжения), а также характеристики разрыва в очагах (длина L и подвижка \bar{u}) даны в табл. 2. Станционные спектры, приведенные к очагу, показаны на рис. 1.

№	MS	Δ°	Σ ₀ *10 ⁻⁴ , м·с	f _n *10 ⁻² , Гц	f ₀ *10 ⁻² , Гц	М ₀ *10 ¹⁹ , Н∙м	L*10 ³ , м	$\Delta \tau^{Pmax},$	Δσ*10 ⁵ , Н/м ²	ησ*10 ⁵ , Η/м ²	— и, м
1	7.4	64.7	8.13	4.4	12.6	56.0	46	1.9	201	16	4.21
2	6.8	65.4	0.20	15.1	16.6	0.7	35	2.3	6	11	0.09
3	6.9	69.3	0.79	4.5	12.0	6.5	48	1.3	21	17	0.45
4	7.4	63.3	2.51	2.0	6.9	17.7	84	8.0	10	36	0.40
5	7.9	62.5	4.57	12.0	12.0	22.0	41	-	112	71	4.76
6	6.3	68.4	0.23	2.5	11.5	1.7	50	-	4	13	0.10
7	6.6	63.4	0.14	16.6	22.9	0.7	22	5.0	16	35	0.38
8	7.8	89.4	6.31	2.8	12.0	78.0	48	9.5	247	33	5.39
9	7.3	98.3	0.63	4.4	4.6	11.0	128	8.0	2	41	0.11

Таблица 2. Характеристики спектров Р-волн и динамические параметры очагов землетрясений 1993 г. по станции "Обнинск".

Примечание. Номера землетрясений в первой графе те же, что и в табл. 1.

Механизмы очагов землетрясений, указанных в табл. 1, рассчитаны по знакам первых вступлений Р-волн на ряде сейсмических станций по программе А. С. Ландера и Ж. Я. Аптекман. Эта программа написана для персонального компьютера и представляет более удобную для пользователя версию программы [8]. Элементы механизмов очагов этих землетрясений помещены в разделе «Каталоги механизмов» настоящего сборника. Стереограммы механизмов в проекции нижней полусферы даны на рис. 2.

В очагах 8 землетрясений [из районов Японии (№№ 1, 2, 5-7), Курило-Камчатской зоны (№№ 4,10), а также Аляски (№ 3)] под действием сжимающего напряжения, ориентированного в близширотном, юго-восточном или в близмеридиональном направлениях, возникли подвижки взбросового типа по плоскостям, в основном, северо-северо-восточного простирания. Такой же тип подвижек отмечается в очаге землетрясения из района Марианских островов, а также Мексики, но по плоскостям северо-западного простирания.

Рис. 1. Очаговые спектры Р-волн, записанные на ст. "Обнинск" Нумерация дана в соответствии с табл. 1.

Рис. 2 . Механизмы очагов землетрясений

1 - нодальные линии; 2,3 - оси главных напряжений, сжатия (2) и растяжения (3); зачернены области сжатия.

Литература

- 1. Сейсмологический бюллетень за 1993 г. (ежедекадный). 1993. / Отв. ред. О.Е. Старовойт, А.И. Захарова. Обнинск: ОМЭ ИФЗ РАН.
- 2. Earthquake Data Report. Jan.-Dec. 1993. // U.S. Depart. Int. Geol. Surv.
- 3. Dzievonski A., Chou T. and Woodhouse J. 1983. Determination of earthquake source parameters from waveform data for stadies of global and regional seismisity // J. Geophys. Res.86. P. 2825-2852.
- 4. Захарова А.И., Чепкунас Л.С. 1997. Спектральные и динамические характеристики очагов сильных землетрясений мира // Землетрясения Северной Евразии в 1992 году. М: Геоинформмарк. С. 120-126.
- 5. Ambraseys N.N. 1997. Surface-wave magnitude calibration for European region earthquakes // J. of Earthquake Engineering. V. 1. №1. P. 1-22.
- 6. Аптекман Ж.Я., Дараган С. К., Долгополов Д. В. и др. 1985. Спектры Р-волн в задаче определения динамических параметров очагов землетрясений. Унификация исходных данных и процедуры расчета амплитудных спектров // Вулканология и сейсмология. № 2. С. 60-70.
- 7. Аптекман Ж.Я., Белавина Ю.Ф., Захарова А.И. и др. 1989. Спектры Р-волн в задаче определения динамических параметров очагов землетрясений. Переход от станционного спектра к очаговому и расчет динамических параметров очага // Вулканология и сейсмология. № 2. С. 66-79.
- 8. Старовойт О.Е., Чепкунас Л.С., Аптекман Ж.Я и др. 1983. Об определении механизма очагов на ЭВМ ЕС-1030 // Физика сейсмических волн и внутреннее строение Земли. М.: Наука. С. 86-91.