УДК 550. 348. 436

ЗЕМЛЕТРЯСЕНИЯ СЕВЕРНОГО ТЯНЬ-ШАНЯ

Н. А. Калмыкова, Н. Н. Михайлова, Н. П. Неверова

В 1993 г. сейсмологическая сеть изменилась следующим образом: закрыты станции "Курменты", "Маркатау", "Каратас", "Боролдай", "Новониколаевка", со второго полугодия – "Бартогай". Основные сведения сети регистрирующих станций Казахстана даны в [1].

Действующая система станций обеспечила представительную регистрацию землетрясений с К_{min}=6.0 вблизи г. Алматы, в центральной части хребтов Заилийский и Кунгей Алатау, и с К_{min}=7.5 на всей изучаемой территории (рис. 1). Расчет и построение схемы К_{min} проводились на ПЭВМ по методике Арановича З.И. [2] при n=3 (n - минимальное число станций, необходимое для определения эпицентра). Из-за нерегулярного поступления бюллетеней станции Киргизии - "Арал", "Нарын", "Пржевальск", "Каджисай", "Бишкек" - были исключены из расчета К_{min}.

Определение координат гипоцентров основывается на использовании двух скоростных моделей. Для центрального района основной является сложная скоростная модель среды В.И. Шацилова [3]. По ней рассчитаны палетки изохрон по временам T_{s-p} для дискретных глубин с шагом 5 км в диапазоне 0-40 км, применяемые при ручной обработке. Для землетрясений с очагами на периферии используется скоростная модель И.В. Горбуновой [4], на основе которой рассчитаны палетки изохрон по временам T_{p-t_o} для средней фиксированной глубины очага.

Компьютерная обработка проводится по программе GIP только для землетрясений локального района, на который распространяется скоростная модель В.И. Шацилова. В основе этой программы лежит известный алгоритм ЭПИ-74 [5], усовершенствованный Е.А. Разаковым [6]. В каталог землетрясений включаются данные, полученные при совместном анализе результатов машинной и ручной обработки для одних и тех же событий.

Вопросам энергетической и магнитудной классификации землетрясений в практике массовой обработки на Северном Тянь-Шане посвящена отдельная статья настоящего сборника.

В каталог землетрясений Северного Тянь-Шаня включены события с К_Р≥6.6, показанные на карте эпицентров (рис. 2).

Рис. 2. Карта эпицентров землетрясений Северного Тянь-Шаня за 1993 г. 1 - энергетический класс К_Р; 2 - глубина гипоцентра, км; 3,4 – сейсмическая станция ИС МН-НАН РК, ИС АН РКирг соответственно.

Распределение числа землетрясений по энергетическим классам имеет вид:

K _P	7	8	9	10	11	12	13	14	15
Ν	297	95	34	10	5	-	-	-	1

Для наиболее сейсмоактивной на Северном Тянь-Шане зоны хребтов Заилийский и Кунгей Алатау аналогичное распределение представлено ниже:

К _Р	7	8	9	10
N	85	14	8	3

Сейсмическая активность всего Северного Тянь-Шаня в текущем году значительно выше, чем в предыдущие годы. Ее рост обусловлен, в основном, процессами, происходящими в хребтах Джунгарского Алатау. В то же время в центральной части территории, в Кунгей-Заилийской сейсмогенирирующей зоне, активность осталась на уровне прошлого года. Здесь не зарегистрировано ни одного землетрясения с К_Р≥12. Из пяти событий 11-го энергетического класса три ощущались в г. Алматы с интенсивностью 2-3 балла.

Важнейшим сейсмическим событием года явилось землетрясение 30 декабря в 14 ч 24 мин с К_Р=15.0, происшедшее в 30-ти км к юго-востоку от г. Талды-Кургана, в непосредственной близости от г. Текели, поэтому землетрясение получило название Текелийского. Его очаг связан с Южно-Джунгарской системой разломов. В эпицентральной области на территории г. Текели интенсивность землетрясения достигла 7 баллов. Инструментальные характеристики этого события по данным обработки СОМЭ ИС АН РК на основании информации по 19 станциям приведены в табл. 1.

Дата	t ₀ , чмс	φ ⁰ , N	λ^0 . E	h, км	K _P	MPVA	MS	M _c	lgM₀, Н∙м
30.12	14 24 06.4	44.82	78.77	20	15.0	6.4	5.4	М _с ^{скм} =5.6 М _с ^{скд} =5.3	17.24

Таблица 1. Инструментальные характеристики Текелийского землетрясения.

Землетрясение сопровождалось многочисленными афтершоками. Характерной особенностью распределения афтершоков во времени является резкое затухание их активности: большая часть (>50%) толчков зарегистрирована в первые сутки (30 декабря). Распределение афтершоков в пространстве показано на рис. 3.

Механизм очага Текелийского землетрясения был определен по 85 станциям Казахстана,

Киргизии, России, Китая. Его решение приведено на рис. 4. Очаг землетрясения характеризуется сдвиго-взбросовым типом механизма. Одна из плоскостей разрыва имеет северо-восточное простирание, другая, являющаяся по всей вероятности истинной, имеет северозападное простирание. Этот вывод сделан на основе совместного анализа данных азимутального годографа, построенного для этого землетрясения, распределения в пространстве афтершоков и механизма очага.

Рис 3. Пространственное распределение афтершоков Текелийского землетрясения 30.12 в14 ч 24 мин с MS=5.4, К_P=15.0

Рис 4. Механизм очага Текелийского землетрясения.

Текелийское землетрясение было зарегистрировано несколькими станциями сильных движений. К сожалению, по разным причинам не были получены записи на станциях "Талды-Курган", "Панфилов", расположенных наиболее близко к эпицентру. Имеются записи лишь в пунктах на расстояниях более 200 км, где интенсивность сотрясений составила от 3 до 4-5 баллов. На территории г. Алматы землетрясение зарегистрировано семью станциями сильных движений, расположенными на грунте в разных инженерно-геологических условиях, из которых одна (Медео) находится на скале, пять - на мощной толще валунно-галечника, одна (Шолохова) - на супесчано-суглинистых грунтах. Регистрируемыми параметрами были смещение, скорость и ускорение. В табл. 2 представлены основные параметры колебаний в соответствии с принятой системой параметризации: А_{тах}- максимальная амплитуда в фазе S-волн, T-соответствующий ей период, d-относительная длительность на уровне 0.5 от А_{тах}.

Как видно, диапазон ускорений колебаний грунта на расстояниях 200-250 км от эпицентра составил по разным станциям от 2.2 до 10.2 см/c^2 , скоростей – от 0.15 до 0.32 см/с, смещений от 0.038 до 0.1 см.

Дата,	Время	Станция	Тип	Регистри-	Δ,	I,	Параметры колебаний				
Д М Г	ч мин с		прибора	руемый параметр	KM	балл	Компо- нента	А _{тах} , см; см/с; см/с ²	T, c	d, c	
1	2	3	4	5	6	7	8	9	10	11	
30.12.1993	14 24 07.1	Курменты	ИСО	скорость	205	4	Ν	0.152	0.23	2.1	
							E	0.20	0.26	2.3	
		Курты	CMTP	смещение	218	4-5	Ν	0.071	3.0	8.0	
							E	0.038	1.2	10.0	
		г. Алматы, Шолохова	ИСО	скорость	225	4-5	E	0.28	0.71	34	
		г. Алматы,	РУА*	ускорение	226	4	N	3.3	0.08	7.0	
		Красина					E	9.7	0.08	13.0	
							Z	2.5	0.12	11.0	
		г. Алматы, Абая	РУА*	ускорение	228	4	Е	5.0	0.20	9.0	
		г. Алматы,	ИСО	скорость	228	4	N	0.30	1.0	30.0	
		Маркова	РУА*	ускорение			Е	0.29	0.62	25.0	
							Ν	6.6	0.12	4.2	
							Z	2.2	0.12	13.0	

Таблица 2. Параметры сильных движений по записям сейсмических станций Казахстана при Текелийском землетрясении 30.12 в 14 ч 24 мин (MS=5.4)

		1	r	1				1		1
1	2	3	4	5	6	7	8	9	10	11
30.12.1993	14 24 07.1	г. Алматы,	РУА*	ускорение	230	4	Е	1.7	0.15	11
		ЦСС "Аль- Фараби"					Z	1.4	0.15	11
			CMTP	смещение	230	4	Ν	0.05	1.7	28.9
							Е	0.1	1.9	22.5
		г. Алматы,	РУА*	ускорение	230	4	Ν	4.28	0.20	8.5
		8 микрорайон					Е	10.2	0.20	10.08
							Z	2.76	0.20	10.5
		г. Алматы,	ИСО	скорость	232	3	Ν	0.30	0.17	4.5
		Медео					Е	0.27	0.05	1.05
			CMTP	смещение			Ν	0.04	2.05	10.2
		Кастек	ИСО	скорость	296	3-4	Ν	0.21	0.20	15
							E	0.26	0.37	18.5

Примечание. *-РУА – регистратор ускорений автоматический на базе акселерометра АПТ.

Литература

- 1. Джанузаков К.Д., Калмыкова Н.А., Гиясова Ш.Ш. Землетрясения Центральной Азии. См. наст. сб.
- 2. Аранович З.И., Артыков Т.У., Мухамедов Б.К. 1980. Расчет эффективности региональных сейсмических станций Средней Азии // Методика и результаты оценки эффективности региональных систем сейсмических наблюдений. Тбилиси: Мецниереба. С. 78-96.
- 3. Шацилов В.И. 1982. Обоснование способа массового определения координат очагов местных землетрясений // Прогноз землетрясений. Вып. 2. Душанбе: Дониш. С. 173-196.
- 4. Горбунова И.В. 1962. Детальное изучение сейсмичности Северного Тянь-Шаня. // Тр. ИФЗ. №25(192). С. 312-324.
- 5. Епифанский А.Г., Кушнир Г.С. 1983. Определение параметров очагов локальных землетрясений в автоматизированной системе прогноза землетрясений СВК АСПС. // Алгоритмы и практика определения параметров гипоцентров землетрясений на ЭВМ. М.: Наука. С. 52-62.
- 6. **Разаков Е.А. 1986.** К вопросу модернизации алгоритма параметров гипоцентров землетрясений. // Комплексные исследования на Алма-Атинском прогностическом полигоне. Алма-Ата: Наука. С. 108-112.