ЗЕМЛЕТРЯСЕНИЯ КУРИЛО-ОХОТСКОГО РЕГИОНА

Н.А. Давыдова, Л.Н. Поплавская, М.И. Рудик, С.В. Клещенко, Т.А. Фокина

Региональная сеть сейсмических станций в 1993 г. состояла из 5 станций (табл. 1), из них одна - "Симушир", была закрыта в октябре 1993 г.

N⁰	№ Станция			Дата	Координаты			Аппаратура			
	Название	Кс	ОД	открытия	φ°. N	λ°. Ε	h.	Тип	Компо-	V _{max} /	ΔT_{max} .
		Межд.	Рег.		T 2	- /	M	прибора	нента	чувствит-ть	c
1	2	3	4	5	6	7	8	9	10	11	12
1	Северо-	SKR	Свк	март 1958	50.67	156 11	22	CKM-3	NFZ	20000	0.36-0.65
1	Курильск*	SILK	CDK	Map1 1950	50.07	150.11	22	CIUN 5	N E Z	10000	0.36-0.65
	Ryphilber								NEZ	5000	0.36-0.65
								СКЛ	NEZ	1000	0 20-20 0
									N.E.Z	500	0.20-18.0
									N.E.Z	200	0.20-16.0
								СКД, КПЧ	N,E,Z	50	0.20-19.0
								C5B	N,E,Z	10.1 c	0.045-4.6
									N,E,Z	1.0 c	0.085-4.6
								ОСП	N,E,Z	$0.04 c^2$	0.02-2.0
								CCP3	N,E,Z	$0.0200{\rm c}^2$	0.05-20.0
								C5C	N,E,Z	25.0	0.01-0.11
									N,E,Z	1.0	0.01.0.11
								УБП	N,E	33	1.0-3.0
								CMP	N,E	7.0	2.0-5.0
								CMP-0	Ν	1.24	2.5
	TTT	arro		5 10 5 0	10.05	11600		СБМ	NEZ	1.1	0.25
2	Шикотан*	SHO	Шкт	нояб. 1958	43.87	146.83	55	CKM-3	N,E,Z	40000	0.30-0.60
									N,E,Z	20000	0.20-0.60
								CIVII	N,E,Z	10000	0.10-0.60
								СКД	N,E,Z	1000	0.20-19.5
									N,E,Z	200	0.20 - 17.0
								скл кни	N,E,Z	100	0.20-10.0
								СҚД, КПЧ	F	50	0.20 - 15.0
									L 7	20	0.20 - 15.0
								C5B	NEZ	50c	0.08-4.6
								002	N.E.Z	0.5 c	0.02-4.6
								ОСП	N.E.Z	$0.04 c^2$	0.03-2.1
									N.E	$0.005 c^2$	0.03-2.1
									Z	$0.005 c^2$	0.03-1.1
								C5C+	N,E,Z	200.0	0.01-0.03
									N,E,Z	20.0	0.01-0.03
									N,E,Z	2.0	0.01-0.02
								CCP3	N,E,Z	$0.020 c^2$	0.015-10.0
3	Южно- Курильск*	YUK	Юкр	окт. 1960	44.03	145.86	28	CKM-3	N,E,Z	10000	0.20-0.50
									N,E,Z	5000	0.20-0.50
								CI AT	N,E,Z	2000	0.20-0.50
								СКД	N,E,Z	1000	0.20-20.0
									N,E,Z	500	0.20-17.0
								CED	N,E,Z	200	0.20-15.0
								COB	N,E,Z	1.0 C	0.50-4.6
								ocn	NEZ	0.01 c	0.02 - 1.1
								CCP3	NEZ	0.08 c	0.02 - 1.1 0.06 11 0
								CCFS C5C	$N \in \mathbf{Z}$	200.0	0.00-11.0
		1	1	I	1				∟۱,∟,∟	200.0	0.01-0.5

Таблица 1. Сейсмические станции Курило-Охотского региона в 1993 г.

1	2	3	4	5	6	7	8	9	10	11	12
									N,E,Z	20.0	0.01-0.3
									N,E,Z	2.0	0.01-0.3
4	Симушир*	SIU	Смш	дек. 1960	46.84	151.80	15	CM-3	N,E,Z	12000	0.50-0.70
									N,E,Z	6000	0.45-0.70
									N,E,Z	3000	0.40-0.70
								CK	N,E,Z	1200	0.20-10.7
									N,E,Z	600	0.20-11.0
									N,E,Z	200	0.20-10.6
								C5B	N,E,Z	25.0 c	0.04-4.6
									N,E,Z	2.5 c	0.04-4.6
	(закр. 17.10.1993)							ОСП	N,E,Z	$0.04 c^2$	0.02-2.0
5	Курильск	KUR	Кур	янв. 1965	45.23	147.87	40	CKM-3	N,E,Z	20000	0.40-0.70
									N,E,Z	10000	0.40-0.70
									N,E,Z	5000	0.40-0.70
								СКД	N,E,Z	1000	0.20-20.0
									N,E,Z	500	0.20-17.0
									N,E,Z	200	0.20-15.0
								СКД, КПЧ	N,E,Z	20	0.20-15.0
								C5B	N,E,Z	10.0 c	0.04-4.6
									N,E,Z	1.0 c	0.05-4.6
								CCP3	N,E,Z	$0.0200 \mathrm{c}^2$	0.02-11.0
								УБП2	N,E	36.0	1.7-3.9
								CMP	N,E	6.86	2.2-4.9
									E	1.0	1.3-2.9
								CM	N,E	25.0	0.015-0.11
								C5C	N,E,Z	1.0	0.014-0.11

Примечание. Знаком * отмечены опорные станции.

Методика обработки и схема деления региона на отдельные сейсмоактивные районы остались прежними [1-4].

Всего в 1993 г. определены параметры 748 землетрясений с (K_C≥9). Распределение их в пространстве и по глубине представлено на рис. 1 и в табл. 2. На глубинах 0-80 км отмечено около 72% от общего числа землетрясений, из них 42% с h=20-30 км. Максимальная зарегистрированная глубина очага составила 530 км.

h, км	N_{Σ}	h, км	N_{Σ}	Ν _Σ h, км	
1 - 10	13	181 - 190	4	361 - 370	1
11 - 20	71	191 - 200	5	371 - 380	2
21 - 30	225	201 - 210	-	381 - 390	1
31 - 40	98	211 - 220	3	391 - 400	4
41 - 50	46	221 - 230	1	401 - 410	1
51 - 60	29	231 - 240	-	411 - 420	2
61 - 70	35	241 - 250	1	421 - 430	6
71 - 80	19	251 - 260	1	431 - 440	1
81 - 90	21	261 - 270	-	441 - 450	1
91 - 100	49	271 - 280	2	451 - 460	1
101 - 110	30	281 - 290	2	461 - 470	2
111 - 120	7	291 - 300	3	471 - 480	-
121 - 130	12	301 - 310	1	481 - 490	-
131 - 140	7	311 - 320	-	491 - 500	-
141 - 150	19	321 - 330	-	501 - 510	1
151 - 160	8	331 - 340	-	511 - 520	-
161 - 170	4	341 - 350	5	521 - 530	1
171 - 180	3	351 - 360	-		

Таблица 2. Число землетрясений Курило-Охотского региона по интервалам глубин их очагов

Распределение землетрясений разных магнитуд по районам дано в табл. 3, откуда следует, что сейсмическая энергия землетрясений с h=0-80 км, равная $\Sigma E \cong 6400 \times 10^{13}$ Дж, значительно превышает энергию глубокофокусных очагов ($\Sigma E \cong 800 \times 10^{13}$ Дж).

Рис. 1. Карта эпицентров землетрясений Курило-Охотского региона за 1993 г. 1 - магнитуда MLH, MSH; 2 - глубина гипоцентра, км; 3 - сейсмическая станция; 4 - граница района.

ЗЕМЛЕТРЯСЕНИЯ СЕВЕРНОЙ ЕВРАЗИИ В 1993 г.

Район				M	ILH					$\Sigma E * 10^{13}$,
	4.0	4.5	5.0	5.5	6.0	6.5	7.0	7.5	8.0	Дж
h=0-80 км										
1. Парамуширский	31	24	2	-	-	-	-	-	-	2.41
2. Онекотан-Матуанский	55	26	2	5	-	-	-	-	-	9.11
3. Симушир-Урупский	65	23	6	-	-	-	-	-	-	3.26
4. Северо-Итурупский	33	6	1	1	1	1	-	-	-	1.32
Кунашир-Шикотанский	59	14	-	-	-	-	-	-		1.09
6. О-в Хоккайдо	30	15	2	-	-	-	-	-	-	2.27
7. Японское море	73	50	8	-	-	2	1	-	1	6400.34
8. Охотское море	3	-	-	-	-	-	-	-	-	-
Всего	349	158	21	6	1	3	1	-	1	6419.83
h>80 км										
1. Парамуширский	1	3	-	-	-	-	-	-	-	0.11
2. Онекотан-Матуанский	10	6	-	-	1	-	-	-	-	5.03
3. Симушир-Урупский	6	6	-	-	-	-	-	-	-	0.20
4. Северо-Итурупский	7	-	-	-	-	1	-	-	-	0.03
5. Кунашир-Шикотанский	24	9	1	-	-	-	-	-	-	0.69
6. О-в Хоккайдо	70	14	3	4	-	-	1	1	-	474.17
7. Японское море	2	1	1	3	1	-	-	-	-	15.765
8. Охотское море	3	2	3	13	11	2	1	-	-	303.52
Всего	123	41	8	20	15	2	2	1	-	802.49
Очаговая зона зем-ния 15.01		48	4	1	-	2	-	2	-	469.61

Таблица 3. Распределение числа землетрясений разных магнитуд и суммарная сейсмическая энергия ΣЕ по районам

Примечание. При составлении этой таблицы величина всех землетрясений приводилась к магнитуде MLH путем пересчета из классов К_С для землетрясений с h≤200 км и из магнитуд MSH с h>200 км по следующим соотношениям: MLH=(K_C-1.2)/2 и MLH=(MSH-1.71)/0.75. Для второго соотношения вводится поправка за глубину очага.

Краткая статистика ощутимых землетрясений в каждом районе представлена в табл. 4. Сильнейшее (MLH=8.0) землетрясение года отмечено в Японском море 12.07 в 13 ч 17 мин (39 на рис. 1), с максимальным макросейсмическим эффектом I=VI по шкале JMA [5].

Таблица 4. Распределение числа землетрясений (в том числе ощутимых) в разных районах по интервалам глубин очагов и максимальные значения интенсивности сотрясений $(I_0)_{max}$ и магнитуд M_{max}

N⁰	h,	\mathbf{N}_{Σ}	Nouvr	$(I_0)_{max}$,	M _{ma}	x
р-на	КМ			баллы	MLH	MSH
1	0-30	30	-	-	4.9	5.5
	31-80	26	1	3	5.0	5.9
	81-140	4	1	2	-	5.8*
2	0-30	57	-	-	5.6	5.9
	31-80	31	1	2	5.6	6.2
	81-200	18	-	-	4.2	5.8
3	0-30	45	-	-	5.0	5.9
	31-80	49	1	2	5.0	5.9
	81-190	12	-	-	4.5	5.8
4	0-30	20	1	3	4.4	5.6
	31-80	21	-	-	5.3	5.9
	81-157	7	-	-	-	5.4*
5	0-30	28	1	3-4	4.5	5.3
	31-80	47	18	4-5	4.4	5.3
	81-175	34	6	5	4.7	5.8
6	0-30	5	1	5	4.8	5.4
	31-80	42	11	6-7	4.9	6.9
	81-240	94	36	9-10	7.2	7.5
7	0-30	123	82	8	8.0	6.6

N⁰	h,	N_{Σ}	N _{oщyt.}	$(I_0)_{max}$,	M _{max}		
р-на	КМ		ν	баллы	MLH	MSH	
	31-80	11	5	6-7	6.8	6.5	
	81-390	9	-	-	-	5.4*	
	0-30	1	-	-	3.9	-	
	31-80	-	-	-	-	-	
	81-530	34	-	-	4.1	6.2	

Примечание. Знаком * помечены магнитуды ЈМА [6]

Определение механизма очагов было выполнено по известному алгоритму [4]. Использовались знаки смещений в продольных волнах, записанных мировой сетью станций, а также данные, полученные на станциях Дальнего Востока. Определены механизмы очагов для 76 землетрясений, 51 из них имели глубину h<80 км, 17 - h=81-300 км, 8 - h>300 км (табл. 5).

Таблица 5. Перечень номеров событий (в графе 1 каталога землетрясений), для которых определен механизм очага в каждом районе по разным интервалам глубин

N⁰		Номер эпицентра н	на рис.1		N_{Σ}
р-на	h=0-30 км	h=31-80	h=81-300	h>300	
1	26,74	15,72,75,76	13		7
2	9,10,11,14	12,29,32,38	19,27,31,37		12
3	34	4,21,22,24,30,36,54	28,60,69		11
4	64	66			2
5		18	6,7,23		4
6	59	20,61,65	2,3,5,17,25,63		10
7	39, 40, 41, 42, 43, 44, 45, 46,				22
	47, 48, 49, 50, 51, 52, 53, 55,				
	56, 57, 58, 62, 67, 68				
8				1,8,16,33,35,70,71,73	8
N_{Σ}	31	20	17	8	76

Остановимся на более детальной характеристике проявления сейсмичности по каждому району в отдельности.

В Парамуширском районе (№ 1) 74% всех землетрясений зарегистрированы на глубинах 30-40 км, наиболее сильное (MLH=5.0) из них отмечено 27 февраля в 18 ч 38 мин (15 на рис. 1).

Определены механизмы очагов 7 землетрясений (13,15,26,32,74,75,76) с гипоцентрами на глубинах 30-130 км. Очаги землетрясений 13,15,72,75,76 находились под воздействием преобладающего напряжения сжатия, что определило тип подвижки - взброс и надвиг. В очагах землетрясений 26,74 преобладало близгоризонтальное напряжение растяжения и более крутое сжатие. Подвижки в очагах землетрясений были как сбросами, так и сбросо-сдвигами. Напряжение сжатия для землетрясений 15,26,72,74,76 ориентировано вкрест простирания островной дуги, а напряжение растяжения для большинства землетрясений имеет субширотную ориентацию. Сейсмический процесс во времени протекал равномерно в течение года (рис. 2).

В Онекотан-Матуанском районе (№ 2) 58% всех землетрясений отмечено на глубинах 30-40 км. Юго-восточнее о. Матуа наиболее сильными были два толчка (9 и 38 на рис. 1) с MLH=5.6: 22.02 в 00 ч 08 мин с h=27±4 км и 11.07 в 17 ч 48 мин с h=42±2 км. Основная масса очагов этой зоны тяготеет к Курило-Камчатскому желобу. В шельфовой зоне зарегистрировано 18 толчков на глубинах 90-200 км, что почти в 2 раза больше, чем в прошлом году. Сильнейший из них (19) с MLH=4.2 произошел 10.03 в 21 ч 56 мин на глубине 140 км.

Определены механизмы очагов 11 землетрясений (9-12,14,19,29,31,32,37,38), 8 из которых произошли на глубинах 0-80 км, 3 - 81-200 км. В очагах землетрясений 11,12,14,29,32,38, с преобладающим напряжением сжатия, преимущественный тип подвижки - взброс, сдвиго-надвиг. В очагах землетрясений 9,10,19,31,37 преобладали подвижки типа сброса и пологого сброса со сдвигом. Ход сейсмического процесса во времени отмечался максимальным всплеском активности в феврале (рис. 2).

В Симушир-Урупском районе (№ 3) землетрясения образуют две группы - Урупскую и Симуширскую. Больше половины (62%) всех землетрясений отмечено на глубинах 30-40 км. Относительно сильными были 3 толчка (34,54,21) с MLH=5.0, которые произошли 23.05 в 16 ч 18

мин с h=24±4 км, 15.07 в 00 ч 51 мин с h=62±8 км в Симуширской группе и 22.03 в 13 ч 58 мин с h=49±4 км в Урупской группе. Здесь по сравнению с прошлым годом отмечено уменьшение сейсмической активности (почти в 3 раза) и в 35 раз уменьшилось количество сейсмической энергии. По шельфу островов отмечено 12 толчков на глубинах 100-190 км, наиболее сильный из них (28) с MLH=4.5 произошел 28.04 в 02 ч 32 мин на глубине 100 ± 20 км.

Определены механизмы очагов 11 землетрясений (4,21,22,24,28,30,34,36,54,60,69), 8 из которых расположены на глубинах 0-80 км, а для трех - h=81-190 км. Система напряжений, действующая в очагах района, характеризуется преобладающим близгоризонтальным сжатием, ориентированным для землетрясений 4,21,28,30,54,60,69 вкрест простирания островной дуги. Преобладающий тип подвижки в верхнем и нижнем интервале глубин - взброс, сдвиго-надвиг. Ход сейсмического процесса во времени был равномерным в течение года (рис. 2).

В Северо-Итурупском районе (\mathbb{N} 4) 52% всех землетрясений имели глубины 30-40 км. Сильное землетрясение (66) с MLH=5.3 здесь произошло 16.09 в 00 ч 59 мин на глубине h=36±5 км. Очаг его характеризовался преобладанием сжимающего напряжения, ориентированного субширотно. Характер движения - взброс. В Курило-Камчатском желобе очаг землетрясения (64), произошедшего 09.09 в 15 ч 09 мин с MLH=4.4, h=30±2 км характеризуется близгоризонтальным напряжением растяжения, ориентированным вдоль простирания структур и более крутым напряжением сжатия, ориентированным субширотно. Тип подвижки - сброс. Ход сейсмического процесса во времени был равномерным (рис. 2).

В Кунашир-Шикотанском районе (\mathbb{N} 5) по сравнению с прошлым годом на 1/3 уменьшилось как число землетрясений, так и их энергия, а также и доля (54%) землетрясений, расположенных на глубинах 30-80 км. Число глубокофокусных очагов осталось на прежнем уровне. Необходимо отметить, что в проливе Екатерины значительно уменьшилась сейсмическая активность, здесь произошло всего два глубоких землетрясения. Относительно сильное землетрясение (6) с MLH=4.7 зарегистрировано 07.02 в 11 ч 08 мин на глубине 114±13 км с близгоризонтальным напряжением сжатия в очаге и более крутым напряжением растяжения. Тип подвижки - взброс. Механизмы очагов определены еще для трех землетрясений, одно из них (18) - в верхнем интервале глубин, а два с h=81÷300 км. В очаге землетрясения 18 по одной из возможных плоскостей разрыва произошел взбросо-сдвиг под воздействием близгоризонтального субширотного напряжения сжатия и достаточно крутого растяжения. Для землетрясений (7,23) с глубиной 100-150 км при близгоризонтальном напряжении растяжения и крутом сжатии наблюдались сбросы. Ход сейсмического процесса во времени отмечался повышенной активностью в феврале (рис. 2).

В районе острова Хоккайдо (№ 6) 67% всех землетрясений зарегистрировано на глубинах 90-300 км. Сильнейшее из них (3) с MLH=7.2, MSH=7.6 произошло 15.01 в 11 ч 06 мин 07 вблизи Тихоокеанского побережья острова Хоккайдо на глубине 92±8 км. За 6 минут до главного толчка на глубине 110 км в его инструментальном эпицентре отмечен форшок с MSHA=6.2. Афтершоковая активность проявилась в первые 10 суток - 33 толчка с $K_C \ge 9$ в диапазоне глубин 90-130 км. Высвободившаяся сейсмическая энергия в очаговой зоне этого землетрясения находится почти на уровне суммарной сейсмической энергии всего района и составляет больше половины (58%) суммарной сейсмической энергии глубокофокусных очагов 1993 г. (табл. 3).

Механизмы очагов форшока и главного толчка подобны - оба находились под воздействием близгоризонтальных напряжений сжатия и более крутых напряжений растяжения и характеризуются взбросовыми подвижками.

Сотрудниками ОМСП проведено обследование макросейсмических проявлений землетрясения 15.01 на Курильских островах (табл. 6). В результате было установлено, что здания и сооружения имеют незначительные разрушения: в некоторых домах произошло полное или частичное разрушение печных труб, во многих квартирах и производственных зданиях образовались трещины в стенах, перекрытиях, осыпалась штукатурка, падала мебель. По опросным данным многие люди испытывали страх, в панике выбегали из домов, некоторые слышали гул, напоминающий работу большой машины. По наблюдениям после землетрясения замечен уход воды от берега на 20-25 м в море. Рассматриваемое землетрясение было наиболее сильным за последние годы в этом районе.

ЗЕМЛЕТРЯСЕНИЯ СЕВЕРНОЙ ЕВРАЗИИ В 1993 г.

N⁰	Пункт	Δ, км		N⁰	Пункт	Δ, км
	$\mathbf{V}1 \ast (\mathbf{D}\mathbf{M}\mathbf{A})$			36	Саката*	580
	<u>V1* (JMA)</u>			37	Сендай*	590
1	Кусиро*	12		38	Фукусима*	657
	¥74			39	Сиракава*	730
	<u>V*</u>			40	Мито*	795
2	Обихиро*	88		41	Какиока*	820
3	Yupoo*	106		42	Токио*	891
5	Хироо	100		43	Якохама*	920
4	Уракава*	149			4 5 баллов	
5	Хатинохе*	350			<u>4-3 000008</u>	
	<u>7-8 (MCK-64)</u>			44	Рейдово	400
6	Головнино	140			<u>4 балла</u>	
7	Менлелеево	165		45	Симушир	735
8	Горячий Пляж	171			<u>II*</u>	
9	Лагунное	175		46	<u>Ому*</u>	212
10	Южно-Курильск	178		40	Ому Румои*	245
11	Отрада	180		48	Xafono*	245
	o ipudu	100		40	Cvttev*	331
	<u>IV*</u>			50	Есаси*	361
12	Немуро*	115		51	Синлжо*	604
13	Томакомай*	224		52	Ямагата*	614
14	Отару	275		53	Утсуномия*	801
15	Муроран	279		54	Никко*	835
16	Хакодате	315		55	Чоси*	849
17	Мутсу	325		56	Кумагая*	860
18	Аомори*	372		57	Каруизава*	879
19	Мияко*	411		58	Чичибу*	888
20	Мориока*	442		59	Чиба*	914
21	Офунато	448		60	Сува*	931
22	Исиномаки*	558		61	Кофу*	943
23	Онахама*	722		62	Кавачучико*	950
	6-7 баллов			63	Татеяма*	959
				64	Мисима*	981
24	Малокурильское	235		65	Аджиро*	981
	5-6 баллов			66	Осима*	999
25		260		67	Миякеджима*	1068
23 26	Горячие ключи	365		68	Хатиджиджима	1158
20	Курильск	390			<u>I*</u>	
	<u>III*</u>			69	Ниигата*	710
20	1 600mmu*	124		70	Вакаматсу*	743
∠0 20	Анасири Момбетоу*	124		71	Такада*	824
29 20		1/0		72	Маебаси*	849
5U 21	Асахикават Ироминосре*	103		73	Ваджима*	877
21	твамидзава Сациоро*	231		74	Катсуура*	927
32 32		242		75	Иида*	991
23 24	КуГЧАН [*] Фуксуроа*	310 492		76	Сизуока*	1017
34		402	-	77	Ирозаки*	1036

Таблица 6. Макросейсмические данные о землетрясении 15.01.93 г. в 11 ч 06 мин (MLH=7.2)

Примечание. Здесь и в табл. 7,8 знаком * отмечены населенные пункты на территории Японии и значения интенсивности сотрясений по национальной шкале JMA [5], заимствованные из [6]. Приближенное соответствие шкал интенсивности JMA и MCK-64 следующее: I* - 1-2 балла, II* - 3-4 балла, III* - 5 баллов, IV* - 6-7 баллов, V* - 8 баллов, VI* - 9-10 баллов, VII* - 11-12 баллов.

Изучены механизмы очагов для 8 других землетрясений района, 4 из которых относятся к

h= 20-80 км, 4 - к h=81-300 км. Систему действующих напряжений для первого глубинного интервала характеризует преобладающее близгоризонтальное напряжение сжатия и более крутое напряжение растяжения. Тип подвижки для землетрясений 20,25,61,63,65 - взбросы и сдвигонадвиги, а в очагах землетрясений 5,7,59 - сбросы и сбросо-сдвиги. Ход сейсмического процесса во времени характеризуется всплеском активности в январе и феврале (рис. 2).

В Японском море (№ 7) после многих лет затишья зарегистрирована серия землетрясений с MLH≥4.0 на глубинах 10-40 км. Однако наиболее многочисленны гипоцентры в интервале 20-30 км. Основной толчок (39 на рис. 1), произошедший 12.07 в 13 ч 17 мин с MLH=8.0, и серия его афтершоков, продолжавшихся до конца года, сопровождались ощутимым сейсмическим эффектом на поверхности в близлежащих населенных пунктах Японских островов Хоккайдо и Хонсю (табл. 7,8; см. также ссылки к каталогу в наст. сб.). В первые сутки по данным [6] было зарегистрировано 420 повторных толчков с MLH=2.9-6.0, во вторые - 385, в третьи - 213. Затухание сейсмичности происходило плавно. Отдельные вспышки активности отмечены после двух сильных афтершоков (45,62).

N⁰	Пункт	Δ, км	N⁰	Пункт	Δ, км
	<u>V*</u>			<u>II*</u>	
1	Суттсу*	85	17	Асахикава*	278
2	Есаси*	128	18	Уракава*	302
3	Отару*	160	19	Ваканай*	351
4	Фукаура*	269	20	Мориока*	382
	<u>IV*</u>		21	Саката*	433
5	Кутчан*	107	22	Синджо	490
6	Муроран*	155		I*	
7	Хакодате*	169		<u> </u>	
8	Томакомай*	195	23	Ому*	322
9	Мутсу*	242	24	Хироо*	342
10	Асмори*	258	25	Мияко*	420
	111*		26	Кусиро*	423
	<u></u>		27	Абасири*	432
11	Саппоро*	176	28	Офунато*	466
12	Ивамидзава*	188	29	Ямагата*	514
13	Хаборо*	267	30	Сендай*	524
14	Хатинохе*	318	31	Инигата*	543
15	Обихиро*	328	32	Онагама*	667
16	Акита*	349			l

Таблица 7. Макросейсмические данные о землетрясении 12.07.93 г. в 13 ч 17 мин (MLH=8.0)

Таблица 8. Макросейсмические данные о землетрясении 07.08.93 г. в 19 ч 42 мин (MLH=6.7)

N⁰	Пункт	Δ , км	N⁰	Пункт	Δ, км
	<u>VI*</u>			<u>II*</u>	
1	Эсаси*	38	11	Хатинохе*	225
2	Хакодате*	90	12	Акита*	258
	<u>III*</u>			<u>I*</u>	
3	Кутчан*	87	13	Саппоро*	178
4	Суттсу*	98	14	Ивамидзава*	192
5	Муроран*	111	15	Уракава*	255
6	Мутсу*	151	16	Румои*	268
7	Аомори*	159	17	Мориока*	284
8	Томакомай*	170	18	Обихиро*	306
9	Отару*	175	19	Хаборо*	310
10	Фукаура*	179	 20	Саката*	344

Интерпретация данных о механизме очага главного толчка позволяет установить, что очаг находился под воздействием близгоризонтальных, ориентированных субширотно, напряжений сжатия и более крутых растягивающих напряжений. Промежуточное напряжение близгоризонтально и ориентировано субмеридиально. Одна из возможных плоскостей разрыва ориентирована субмеридионально с крутым падением на восток. Подвижка по этой плоскости взброс, осложненный сдвигом. Другая плоскость имеет юго-западное простирание, характер подвижки аналогичен движению по первой плоскости. По обеим плоскостям разрыва взбросовая компонента подвижки превышала сдвиговую.

Всего удалось определить механизм очага для 21 афтершока. Их механизмы разнообразны, в 8 случаях (44,45,46,51,52,55,56,68) они подобны механизму главного толчка. Система напряжений в очагах афтершоков была неустойчивой, но преобладали близгоризонтальные напряжения сжатия И более крутые растяжения. В очагах афтершоков -40-47,52,53,55,56,58,62,67,68 наблюдались взбросы и сдвиго-надвиги, а у афтершоков 48-51,53,57 сбросы. Ход сейсмического процесса во времени показывает наивысший всплеск активности в июле, августе (рис. 2).

Сейсмическая активность Охотского моря (№ 8) сохранилась на уровне прошлого года. На севере Курило-Охотской котловины сконцентрировалась группа глубокофокусных очагов (h=350-510 км), наиболее сильным (MSH=5.7) из которых был очаг (73), произошедший 25.11 в 09 ч 02 мин на глубине h=448±2 км. Механизмы исследованных очагов 70,71,73 этой группы характеризуются подвижками типа сброса, вызванными близгоризонтальными напряжениями растяжения. Помимо этого, определены механизмы очагов еще для 5 землетрясений. Два из них (8,16) расположены в северо-восточной части Охотского моря. Они характеризуются сдвигонадвиговыми подвижками под воздействием близгоризонтальных напряжений сжатия. Для трех других (1,33,35) характерна сбросовая подвижка.

Интерпретация данных каталога механизмов очагов (см. наст. сб.) позволяет оценить осредненное напряженное состояние и выявить характерные типы подвижек в очагах Курило-Охотских землетрясений за 1993 год (табл. 9). В большинстве случаев в изученных механизмах в земной коре и верхней мантии действовали близгоризонтальные напряжения сжатия и более крутые растягивающие напряжения.

N⁰	h,			Напря	жения			Тип подвижки
р-на	KM		Г	1	V]	2	
		PL	AZM	PL	AZM	PL	AZM	
1	0-30	13	56	18	319	67	178	сброс
	31-80	60	24	28	224	08	128	сдвиго-надвиг
	81-300	44	126	37	269	20	15*	сдвиго-надвиг
2	0-30	61	295	28	90	12	184	сдвиго-надвиг
	31-80	43	347	49	170	02	80	сдвиго-надвиг
	81-300	06	102	38	10	53	200	пологий сброс со сдвигом
3	0-30	68	173	11	292	19	26	надвиг
	31-80	58	55	31	30	20	129*	сдвиго-надвиг
	31-300	68	36	24	214	00	128	сдвиго-надвиг
4	0-30	12	220	09	312	75	77*	нормальный сброс
	31-80	51	286	06	189	39	94*	взброс
5	31-80	39	119	01	209	51	300*	сброс
	81-300	59	323	31	128	08	221	сдвиго-надвиг
6	0-30	38	32	28	278	40	162*	сбросо-сдвиг
	31-80	63	34	23	202	00	303	сдвиго-надвиг
	81-300	29	355	58	206	13	93	сдвиго-надвиг
7	Гл. толчок 12.07.93 г.							
	и его афтершоки							
	I группа с гл. толчком	80	172	07	28	04	296	надвиг
	II группа	65	68	24	246	01	336	сдвиго-надвиг
	III группа	03	72	08	336	77	181	нормальный сброс
8	h>300	41	40	39	174	26	284	взбросо-сдвиг

Таблица 9. Распределение числа землетрясений с осредненной ориентацией тектонических напряжений.

Таким образом, анализ сейсмического процесса в целом по Курило-Охотскому региону за 1993 г. показывает, что наиболее высокая сейсмическая активность и суммарная энергия имели место в районе Японского моря. Для высокоактивного слоя на глубинах 0-80 км был рассчитан график повторяемости в диапазоне М=4-6 с шагом 0.5M, который имеет вид:

lgN=8.54+1.42(±0.31) M.

Литература

- 1. **Миталева Н.А, Бойчук А.Н. 1988.** Землетрясения Курило-Охотского региона // Землетрясения в СССР в 1985 году. М.: Наука. С. 144-169.
- 2. Методическое, алгоритмическое и информационно-справочное обеспечение регионального центра сбора и обработки сейсмологических наблюдений: 1985. // Заключительный отчет. ИМГиГ. Рук. Темы А.Н.Иващенко. Инв. N 02860019854. Москва. 86 с.
- 3. Поплавская Л.Н., Бобков А.О., Кузнецова В.Н. и др. 1989. Принципы формирования и состав алгоритмического обеспечения регионального центра обработки сейсмологических наблюдений (на примере Дальнего Востока) // Сейсмологические наблюдения на Дальнем Востоке СССР (Методические работы ЕССН). М.: Наука. С. 32-51
- 4. Желанкина Ж.Я., Кейлис-Борок В.И. и др. 1989. Массовое определение механизмов очагов землетрясений на ЭВМ // Теория и анализ сейсмологических наблюдений. М.: Наука. С. 45-58.
- 5. Hisada T., Nakagawa K. 1958. Present Japanese Development in Engineering Seismology and their Application to Buildings. Japan.
- 6. The Seismological Bulletin of JMA, 1993. 1994. Токио.