СПЕКТРАЛЬНЫЕ И ДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ СИЛЬНЫХ ЗЕМЛЕТРЯСЕНИЙ МИРА

А.И.Захарова, Л.С.Чепкунас

Записи 14 сильных землетрясений мира цифровой аппаратурой IRIS, установленной на станции Обнинск, исследованы для определения спектральных и динамических характеристик их очагов. В табл.1 представлены основные параметры землетрясений по данным сейсмических служб России [1] и США [2]. Как и прежде [3], значения параметров t₀, φ , λ , η для I и II получены по временам первых вступлений продольных волн P, зарегистрированных сейсмическими станциями и согласованных с глобальными годографами Джеффриса-Буллена, для III - по методу СМТ [4].

NN	Дата,	Ист.	t_0 ,	Коор	динаты оч	нага	Магнитуды		цы	Район
ПП	дм		ч мин с	φ°.N	λ°.Ε	h, км	MPVA	MPVB	MS	
1	02.03	Ι	12 29 59.3	52.92	159.89	41	6.8	7.1	7.1	У восточного поб. Камчатки
		II	12 29	52.915	159.886	38.6	6.5		6.8	
			39.59							
		Ш	12 29 47.3	52.85	160.36	50.2				
2	13.03	Ι	17 18 40.9	39.90	39.58	29	6.5	6.7	6.7	Турция
		II	17 18	39.710	39.605	27.2	6.2		6.8	
			39.98							
		Ш	17 18 46.4	39.94	39.57	15.0				
3	25.04	Ι	18 06 03.6	40.31	-124.11	14	6.7	7.2	7.1	Поб. северной Калифорнии
		II	18 06	40.368	-124.316	15.1	6.3		7.1	
			04.21							
		III	18 06 11.8	40.25	-124.31	15.0				-
4	17.05	Ι	09 49 18.5	7.34	126.65	33	6.8	7.1	7.1	О. Минданао, Филиппины
		II	09 49	7.239	126.645	32.8	6.2		7.1	
			19.11							
		Ш	09 49 29.4	7.27	126.96	34.0				2
5	25.05	Ι	16 55 07.4	20.07	-77.89	33	6.5	6.5	7.0	Район Кубы
		II	16 55	19.613	-77.872	23.1	6.3		6.9	
			04.17							
		Ш	16 55 11.1	19.84	-77.70	15.0				
6	28.06	I	11 57 34.9	34.19	-116.54	10	6.6	6.7	7.8	Южная Калифорния
		П	11 57	34.201	-116.436	1.1	6.2		7.6	
			34.12							
		Ш	11 57 53.0	34.65	-116.65	15.0				
7	10.07	1	09 31 29.7	44.87	149.46	33	6.4	6.4	6.6	Курильские о-ва, Россия
		11	09 31	44.695	149.482	19.9	6.2		6.5	
			27.59	11.00	10.00	20.0				
	10.07	Ш	09 31 36.3	44.69	49.68	30.8	<i>.</i>		- 1	
8	18.07		08 36 59.7	39.55	143.28	33	6.4	7.0	7.1	У поб. о. Хонсю, Япония
		11	08 36	39.419	143.330	28.6	6.2		6.9	
		ш	58.70 08.27.04.4	20.47	142.54	15.0				
	10.00	Ш	08 37 04.4	39.47	143.54	15.0	1			T.C.
9	19.08	і п	02 04 37.4	42.24	73.59	29	7.1	7.2	7.5	Киргизия
		11	02 04	42.142	/3.3/3	27.4	0.0		/.4	
		ш	3/.41 02 04 45 9	42.10		17.0				
10	20.00	Щ	10 10 44 5.8	42.19	12.52	1/.0	(5	()	7.0	O
10	28.08	1 п	18 18 44.5	-0./5	-13.01	5 15 5	0.3	6.9	/.U 7.0	Севернее о. Вознесения
		11	10 10 16 14	-0.903	-13.302	13.3	0.3		/.0	
			40.44							

Таблица 1. Сведения о землетрясениях

СПЕКТРАЛЬНЫЕ И ДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ СИЛЬНЫХ ЗЕМЛЕТРЯСЕНИЙ МИРА А.И.Захарова, Л.С.Чепкунас

		III 18 18 51.7	-0.71	-13.54	15.0				
11	02.09	I 00 16 04.6	12.19	-87.56	33	5.6	6.7	7.2	Побережье Никарагуа
		II 00 16	11.742	-87.340	44.8	5.3		7.2	
		01.69							
		III 00 16 42.0	11.20	-87.81	15.0				
12	18.10	I 15 11 57.8	7.09	-76.99	3	6.7	6.9	7.2	Северная Колумбия
		II 15 11	7.075	-76.862	10.0	6.6		7.3	
		59.11							
		III 15 12 09.8	7.27	-76.34	15.0				
13	23.10	I 23 19 46.7	42.58	45.10	30	6.3	6.5	6.3	Восточный Кавказ, Грузия
		II 23 19	42.589	45.104	16.4	6.1		6.5	
		45.20							
		III 23 19 49.9	42.67	45.01	15.0				
14	12.12	I 05 29 27.4	-8.27	121.79	33	7.1	7.5	7.4	Район о.Флорес
		II 05 29	-8.480	121.896	27.7	6.5		7.5	
		26.35							
		III 05 29 49.9	-8.34	122.49	20.4				

Различия этих параметров в I и II в основном не выходят за пределы случайных ошибок определений, за исключением нескольких случаев, явно различающихся системами наблюдений. Вместе с тем для преобладающего числа сильных событий можно отметить некоторые, по большей части незначимые, запаздывания времени возникновения t₀ по данным I по сравнению с II. Хотя эти запаздывания не повлекли значимых расхождений в координатах гипоцентров, их явно направленный характер свидетельствует о необходимости проведения в дальнейшем специального исследования причин на более статистически представительном материале. Кроме того для всех событий имеют место существенные запаздывания t₀ по III по сравнению с I и II и, как следствие, значительные расхождения в координатах. Это вполне закономерно, так как для III кинематические параметры очагов соответствуют максимальной фазе сейсмического процесса, а для I и II - его началу. Благодаря одинаковой методике расчета в I и II значения магнитуд землетрясений по поверхностным волнам (MS) практически не различаются. Значимые превышения магнитуд по объемным волнам (Mb) в I по сравнению с II объясняются различиями методических приемов их определения.

Спектральные характеристики очагов (уровень длиннопериодной ветви спектра E_0 , частоты точки перелома f_{π} и угловой точки спектра f_0), их динамические параметры (сейсмический момент M_0 , сброшенное $\delta \sigma$ и кажущееся $\eta \ \overline{\sigma}$ напряжения), а также характеристики разрыва в очагах (длина L и подвижка \overline{u}) рассчитаны по записям P-волн цифровой аппаратурой IRIS на станции Обнинск (табл. 2).

NN	?	?,10	?f,10	?f,10	M ₀ ,10	L,10	max,	,10	,10	u,
пп		м.с	ГЦ	ГЦ	Н.М	М	с	н/м	н/м	М
1	62.6	1.3	3.8	9.6	9.1	60	2.5	15	25	0.40
2	15.4	0.9	21.9	21.9	0.5	22	5.0	16	50	0.38
3	83.5	1.4	7.2	9.6	8.3	52	-	21	12	1.12
4	84.1	1.8	5.1	10.0	9.4	50	2.3	26	10	1.37
5	86.8	0.2	8.5	17.8	1.5	28	6.0	24	47	0.70
6	88.1	3.2	0.8	4.6	20.0	98	9.0	7	56	0.76
7	65.4	0.3	6.6	11.5	1.4	42	6.4	7	12	0.29
8	67.0	1.1	7.8	11.5	4.6	42	12.7	22	21	0.95
9	27.3	6.3	3.5	6.9	9.2	70	10.0	9	42	0.68
10	69.0	0.4	9.3	14.4	1.6	31	2.8	19	38	0.71
11	98.2	0.6	3.5	5.8	5.5	86	-	3	25	0.27
12	97.3	0.2	7.4	11.0	2.1	40	3.3	11	57	0.56
13	13.7	1.3	8.3	20.9	0.7	24	6.8	18	9	0.44
14	94.0	1.9	4.6	7.1	18.0	70	25.0	18	15	1.34

Таблица 2. Характеристика спектров Р-волн и динамические параметры очагов землетрясений по станции Обнинск [OBN]

Результаты расчетов приведены в табл.2. Методика определения указанных очаговых параметров по амплитудным спектрам смещений Р-волн, зарегистрированных стандартной аналоговой аппаратурой, описана в [5, 6]. Использование цифровых записей скоростей сейсмических колебаний для получения исходных станционных спектров технически особых трудностей не

вызвало и позволило более точно найти величины сейсмических моментов, пропорциональные уровню длиннопериодной ветви спектров, особенно для сильнейших событий. Это хорошо видно на рис. 1, где показаны станционные спектры двух землетрясений 1991 г. - 21 февраля с MS=6.4 (Берингово море) и 20 июня с MS =6.8 (Индонезия), рассчитанные по записям Р-волн в Обнинске. Для обоих землетрясений значения спектральных плотностей, соответствующих цифровым записям, превышают аналогичные значения по аналоговым записям, причем наиболее отчетливо - у второго землетрясения с большей магнитудой.

Очаговые спектры смещений (станционные спектры, приведенные к очагу) по цифровым записям станции Обнинск для исследованных землетрясений показаны на рис.2.

В последнее время на основе сейсмических моментов M_0 рассчитываются так называемые моментные магнитуды M_w [7,8] по формуле:

$$M_{\rm w} = 2/3 \log M_0 - 10.7 \quad , \tag{1}$$

так как из-за насыщения шкалы стандартных магнитуд MS, особенно для сильных низкочастотных землетрясений, значения MS оказываются существенно заниженными. Определения магнитуд M_w по (1) для исследуемых землетрясений с использованием значений M₀ из табл. 2 были сравнены с аналогичными магнитудами M_w, полученными с использованием значений Мо из корелляционной зависимости:

$$\log M_o = 1.46 \text{ MS} + 16.53$$
 . (2)

Зависимость (2) найдена для землетрясений региона Крым - Кавказ - Копетдаг в интервале магнитуд MS = 3.5-7.5 [9]. Сопоставление магнитуд Mw представлено на рис.3. Расчеты показывают, что в интервале M_w от 6 до 8 разница между $M_w(MS)$ и $M_w(M_0)$ не превышает 0.2 единиц магнитуды, т.е. находится в пределах случайной ошибки вычислений. Это может свидетельствовать о возможной применимости (2) не только в указанном регионе для получения значений M_w из MS в интервале магнитуд 6-9 при отсутствии соответствующих M_0 , что особенно важно для землетрясений исторического и ранне-инструментального периодов.

Рис. 3 Линейная корреляция моментных магнитуд, найденных разными способами

Элементы механизмов очагов 6 сильных событий, имевших место в Северной Евразии, помещены в разделе "Каталоги дополнительных параметров землетрясений" настоящего сборника. Стереограммы механизмов очагов в проекции нижней полусферы даны на рис.4.

Рис. 4 Механизмы очагов землетрясений Нодальные линии (1), оси главных напряжений - сжатия Р (2) и растяжения Т (3). Нумерация дана в соответствии с табл.2.

Решения для них получены по знакам первых вступлений Р-волн ряда сейсмических станций, большая часть которых размещена в пределах изучаемой территории, с помощью программы А.С. Ландера и Ж.Я. Аптекман, написанной для персонального компьютера и представляющей более удобную для пользователя версию программы [10].

Литература

- 1. Сейсмологический бюллетень (ежедекадный) за 1992 г. Обнинск: ОМЭ ИФЗ РАН, 1992, 1993.
- 2. Earthquake Data Report. Jan.- Dec. 1992. // U.S. Depart. Int. Geol. Surv., 1992, 1993.
- Захарова А.И., Чепкунас Л.С. Динамические параметры очагов сильных землетрясений мира // Землетрясения в СССР в 1989 году. М: Наука, 1993. С. 211-220.
- Dziewonski A., Chou T. and Woodhouse J. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity // J. Geophys. Res. 86.. 1983. P. 2825-2852.
- 5. Аптекман Ж.Я., Дараган С.К., Долгополов Д.В. и др. Спектры Р-волн в задаче определения динамических параметров очагов землетрясений. Унификация исходных данных и процедуры расчета амплитудных спектров // Вулканология и сейсмология. 1985. N 2. C. 60-70.
- 6. Аптекман Ж.Я., Захарова А.И., Зобин В.М. и др. Спектры Р-волн в задаче определения динамических параметров очагов землетрясений. Переход от станционного спектра к очаговому и расчет динамических параметров очага. // Вулканология и сейсмология. N 2.1989. С. 66-79.

- 7. Kanamori H. The energy release in great earthquakes. // J. Geophys. Res.. 82. 1977. P. 2981-2997.
- 8. Hanks T.C. and Kanamori H. A moment-magnitude scale. // J. Geophys. Res.. 84. 1979. P. 2348-2350.
- Kondorskaja N.V., Zakharova A.I., Chepkunas L.S. Some aspects conserning moment magnitude. (in print). 1996.
- 10. Старовойт О.Е., Чепкунас Л.С., Аптекман Ж.Я. и др. Об определении механизма очагов на ЭВМ ЕС-1030 // Физика сейсмических волн и внутреннее строение Земли. М.: Наука, 1983. С. 86-91.