## СПЕКТРАЛЬНЫЕ И ДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ СИЛЬНЫХ ЗЕМЛЕТРЯСЕНИЙ МИРА

## А.И.Захарова, Л.С.Чепкунас

Записи 14 сильных землетрясений мира цифровой аппаратурой IRIS, установленной на станции Обнинск, исследованы для определения спектральных и динамических характеристик их очагов. В табл.1 представлены основные параметры землетрясений по данным сейсмических служб России [1] и США [2]. Как и прежде [3], значения параметров  $t_0$ ,  $\phi$ ,  $\lambda$ ,  $\eta$  для I и II получены по временам первых вступлений продольных волн P, зарегистрированных сейсмическими станциями и согласованных с глобальными годографами Джеффриса-Буллена, для III - по методу СМТ [4].

*Таблица 1.* Сведения о землетрясениях

| NN                                      | Дата, | Ист.    | t <sub>0</sub> ,    | Координаты очага |          |            | Магнитуды |     |            | Район                          |
|-----------------------------------------|-------|---------|---------------------|------------------|----------|------------|-----------|-----|------------|--------------------------------|
| ПП                                      | дага, | rici.   | ч мин с             | φ°,N             | λ°,Е     | h, км      | MPVA      |     |            | 1 анон                         |
| 1                                       | 02.03 | I       | 12 29 59.3          | 52.92            | 159.89   | 41         | 6.8       | 7.1 | 7.1        | У восточного поб. Камчатки     |
| 1                                       | 02.03 |         | 12 29               | 52.915           | 159.886  | :          | 6.5       | /.1 | 6.8        | 5 BOCTO-IROTO IROO. Raw-tatika |
|                                         |       | - 11    | 39.59               | 32.713           | 157.000  | 30.0       | 0.5       |     | 0.0        |                                |
|                                         |       | Ш       | 12 29 47.3          | 52.85            | 160.36   | 50.2       |           |     |            |                                |
| 2                                       | 13.03 | I       | 17 18 40.9          | 39.90            | 39.58    | 29         | 6.5       | 6.7 | 6.7        | Турция                         |
|                                         |       | II      | 17 18               | 39.710           | 39.605   | 27.2       | 6.2       |     | 6.8        |                                |
|                                         |       |         | 39.98               |                  |          |            |           |     |            |                                |
| *************************************** |       | Ш       | 17 18 46.4          | 39.94            | 39.57    | 15.0       |           |     |            |                                |
| 3                                       | 25.04 |         | 18 06 03.6          | 40.31            |          | 14         | 6.7       | 7.2 | 7.1        | Поб. северной Калифорнии       |
|                                         |       | II      | 18 06               | 40.368           | -124.316 | 15.1       | 6.3       |     | 7.1        |                                |
|                                         |       |         | 04.21               |                  |          |            |           |     |            |                                |
|                                         |       |         | 18 06 11.8          | 40.25            | <u> </u> | 15.0       |           |     |            |                                |
| 4                                       | 17.05 |         | 09 49 18.5          | 7.34             | 126.65   | 33         | 6.8       | 7.1 | 7.1        | О. Минданао, Филиппины         |
|                                         |       | •       | 09 49               | 7.239            | 126.645  | 32.8       | 6.2       |     | 7.1        |                                |
|                                         |       |         | 19.11<br>09 49 29.4 | 7.27             | 126.96   | 34.0       |           |     |            |                                |
| 5                                       | 25.05 |         | 16 55 07.4          | 20.07            | ·····    | 34.0       | 6.5       | 6.5 | 7.0        | Район Кубы                     |
| 3                                       | 23.03 |         | 16 55 07.4          | 19.613           | -77.872  |            | 6.3       | 0.5 | 6.9        | тайон кубы                     |
|                                         |       | 11      | 04.17               | 17.015           | -77.072  | 23.1       | 0.5       |     | 0.7        |                                |
|                                         |       | III     | 16 55 11.1          | 19.84            | -77.70   | 15.0       |           |     |            |                                |
| 6                                       | 28.06 |         | 11 57 34.9          | 34.19            | -116.54  | 10         | 6.6       | 6.7 | 7.8        | Южная Калифорния               |
|                                         |       | •       | 11 57               | 34.201           | -116.436 | 1.1        | 6.2       |     | 7.6        | * *                            |
|                                         |       |         | 34.12               |                  |          |            |           |     |            |                                |
|                                         |       | Ш       | 11 57 53.0          | 34.65            | -116.65  | 15.0       |           |     |            |                                |
| 7                                       | 10.07 |         | 09 31 29.7          | 44.87            | 149.46   | 33         | 6.4       | 6.4 |            | Курильские о-ва, Россия        |
|                                         |       | II      | 09 31               | 44.695           | 149.482  | 19.9       | 6.2       |     | 6.5        |                                |
|                                         |       |         | 27.59               |                  |          |            |           |     |            |                                |
|                                         |       | ******* | 09 31 36.3          | 44.69            | 49.68    | 30.8       |           | - ^ |            |                                |
| 8                                       | 18.07 | •       | 08 36 59.7          | 39.55            | 143.28   | 33         | 6.4       | 7.0 | 7.1        | У поб. о. Хонсю, Япония        |
|                                         |       | 11      | 08 36               | 39.419           | 143.330  | 28.6       | 6.2       |     | 6.9        |                                |
|                                         |       | Ш       | 58.70<br>08 37 04.4 | 39.47            | 143.54   | 15.0       |           |     |            |                                |
| 9                                       | 19.08 |         | 02 04 37.4          | 42.24            | 73.59    | 13.0<br>29 | 7.1       | 7.2 | 7.5        | Киргизия                       |
| J                                       | 12.00 |         | 02 04 37.4          | 42.142           | 73.575   | -          | 6.6       | 1.4 | 7.3<br>7.4 | тупрі пэня                     |
|                                         |       | 11      | 37.41               | 12.172           | 15.515   | ۲,.¬       | 0.0       |     | ,.⊣        |                                |
|                                         |       | III     | 02 04 45.8          | 42.19            | 73.32    | 17.0       |           |     |            |                                |
| 10                                      | 28.08 |         | 18 18 44.5          | -0.75            | -13.61   | 3          | 6.5       | 6.9 | 7.0        | Севернее о. Вознесения         |
|                                         |       |         | 18 18               | -0.965           | -13.562  |            | 6.3       |     | 7.0        | *                              |
|                                         |       |         | 46.44               |                  |          |            |           |     |            |                                |

## СПЕКТРАЛЬНЫЕ И ДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ СИЛЬНЫХ ЗЕМЛЕТРЯСЕНИЙ МИРА А.И.Захарова, Л.С.Чепкунас

|    |       |        |         |        |         |      | =   | =   |     | =                        |
|----|-------|--------|---------|--------|---------|------|-----|-----|-----|--------------------------|
|    |       | III 18 | 18 51.7 | -0.71  | -13.54  | 15.0 |     |     |     |                          |
| 11 | 02.09 | I 00   | 16 04.6 | 12.19  | -87.56  | 33   | 5.6 | 6.7 | 7.2 | Побережье Никарагуа      |
|    |       | II 00  | 16      | 11.742 | -87.340 | 44.8 | 5.3 |     | 7.2 |                          |
|    |       | 01     | .69     |        |         |      |     |     |     |                          |
|    |       | III 00 | 16 42.0 | 11.20  | -87.81  | 15.0 |     |     |     |                          |
| 12 | 18.10 | I 15   | 11 57.8 | 7.09   | -76.99  | 3    | 6.7 | 6.9 | 7.2 | Северная Колумбия        |
|    |       | II 15  | 11      | 7.075  | -76.862 | 10.0 | 6.6 |     | 7.3 |                          |
|    |       | 59     | ).11    |        |         |      |     |     |     |                          |
|    |       | III 15 | 12 09.8 | 7.27   | -76.34  | 15.0 |     |     |     |                          |
| 13 | 23.10 | I 23   | 19 46.7 | 42.58  | 45.10   | 30   | 6.3 | 6.5 | 6.3 | Восточный Кавказ, Грузия |
|    |       | II 23  | 19      | 42.589 | 45.104  | 16.4 | 6.1 |     | 6.5 |                          |
|    |       | 45     | 5.20    |        |         |      |     |     |     |                          |
|    |       | III 23 | 19 49.9 | 42.67  | 45.01   | 15.0 |     |     |     |                          |
| 14 | 12.12 | I 05   | 29 27.4 | -8.27  | 121.79  | 33   | 7.1 | 7.5 | 7.4 | Район о.Флорес           |
|    |       | II 05  | 29      | -8.480 | 121.896 | 27.7 | 6.5 |     | 7.5 | _                        |
|    |       | 26     | 5.35    |        |         |      |     |     |     |                          |
|    |       | III 05 | 29 49.9 | -8.34  | 122.49  | 20.4 |     |     |     |                          |

СПЕКТРАЛЬНЫЕ И ДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ СИЛЬНЫХ ЗЕМЛЕТРЯСЕНИЙ МИРА А.И.Захарова, Л.С.Чепкунас

*Рис. 1* Станционные спектры смещения Р-волн по аналоговым (1) и цифровым (2) записям на станции Обнинск

СПЕКТРАЛЬНЫЕ И ДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ СИЛЬНЫХ ЗЕМЛЕТРЯСЕНИЙ МИРА А.И.Захарова, Л.С.Чепкунас

**Рис. 2** Очаговые спектры смещения Р-волн, записанных аппаратурой IRIS на станции Обнинск Нумерация дана в соответствии с табл.1.

Различия этих параметров в I и II в основном не выходят за пределы случайных ошибок определений, за исключением нескольких случаев, явно различающихся системами наблюдений. Вместе с тем для преобладающего числа сильных событий можно отметить некоторые, по большей части незначимые, запаздывания времени возникновения t<sub>0</sub> по данным I по сравнению с II. Хотя эти запаздывания не повлекли значимых расхождений в координатах гипоцентров, их явно направленный характер свидетельствует о необходимости проведения в дальнейшем специального исследования причин на более статистически представительном материале. Кроме того для всех событий имеют место существенные запаздывания t<sub>0</sub> по III по сравнению с I и II и, как следствие, значительные расхождения в координатах. Это вполне закономерно, так как для III кинематические параметры очагов соответствуют максимальной фазе сейсмического процесса, а для I и II - его началу. Благодаря одинаковой методике расчета в I и II значения магнитуд землетрясений по поверхностным волнам (МS) практически не различаются. Значимые превышения магнитуд по объемным волнам (Мb) в I по сравнению с II объясняются различиями методических приемов их определения.

Спектральные характеристики очагов (уровень длиннопериодной ветви спектра  $E_0$ , частоты точки перелома  $f_\pi$  и угловой точки спектра  $f_0$ ), их динамические параметры (сейсмический момент  $M_0$ , сброшенное  $\delta \sigma$  и кажущееся  $\eta$   $\sigma$  напряжения), а также характеристики разрыва в очагах (длина L и подвижка u) рассчитаны по записям P-волн цифровой аппаратурой IRIS на станции Обнинск (табл. 2).

*Таблица 2.* Характеристика спектров Р-волн и динамические параметры очагов землетрясений по станции Обнинск [OBN]

| NN | ?    | ?,10 | ?f,10 | ?f,10 | $M_0,10$ | L,10 | max, | ,10 | ,10 | u,   |
|----|------|------|-------|-------|----------|------|------|-----|-----|------|
| пп |      | м.с  | гц    | гц    | н.м      | M    | С    | н/м | н/м | М    |
| 1  | 62.6 | 1.3  | 3.8   | 9.6   | 9.1      | 60   | 2.5  | 15  | 25  | 0.40 |
| 2  | 15.4 | 0.9  | 21.9  | 21.9  | 0.5      | 22   | 5.0  | 16  | 50  | 0.38 |
| 3  | 83.5 | 1.4  | 7.2   | 9.6   | 8.3      | 52   | -    | 21  | 12  | 1.12 |
| 4  | 84.1 | 1.8  | 5.1   | 10.0  | 9.4      | 50   | 2.3  | 26  | 10  | 1.37 |
| 5  | 86.8 | 0.2  | 8.5   | 17.8  | 1.5      | 28   | 6.0  | 24  | 47  | 0.70 |
| 6  | 88.1 | 3.2  | 0.8   | 4.6   | 20.0     | 98   | 9.0  | 7   | 56  | 0.76 |
| 7  | 65.4 | 0.3  | 6.6   | 11.5  | 1.4      | 42   | 6.4  | 7   | 12  | 0.29 |
| 8  | 67.0 | 1.1  | 7.8   | 11.5  | 4.6      | 42   | 12.7 | 22  | 21  | 0.95 |
| 9  | 27.3 | 6.3  | 3.5   | 6.9   | 9.2      | 70   | 10.0 | 9   | 42  | 0.68 |
| 10 | 69.0 | 0.4  | 9.3   | 14.4  | 1.6      | 31   | 2.8  | 19  | 38  | 0.71 |
| 11 | 98.2 | 0.6  | 3.5   | 5.8   | 5.5      | 86   | -    | 3   | 25  | 0.27 |
| 12 | 97.3 | 0.2  | 7.4   | 11.0  | 2.1      | 40   | 3.3  | 11  | 57  | 0.56 |
| 13 | 13.7 | 1.3  | 8.3   | 20.9  | 0.7      | 24   | 6.8  | 18  | 9   | 0.44 |
| 14 | 94.0 | 1.9  | 4.6   | 7.1   | 18.0     | 70   | 25.0 | 18  | 15  | 1.34 |

Результаты расчетов приведены в табл.2. Методика определения указанных очаговых параметров по амплитудным спектрам смещений Р-волн, зарегистрированных стандартной аналоговой аппаратурой, описана в [5, 6]. Использование цифровых записей скоростей сейсмических колебаний для получения исходных станционных спектров технически особых трудностей не

вызвало и позволило более точно найти величины сейсмических моментов, пропорциональные уровню длиннопериодной ветви спектров, особенно для сильнейших событий. Это хорошо видно на рис. 1, где показаны станционные спектры двух землетрясений 1991 г. - 21 февраля с МS=6.4 (Берингово море) и 20 июня с МS =6.8 (Индонезия), рассчитанные по записям Р-волн в Обнинске. Для обоих землетрясений значения спектральных плотностей, соответствующих цифровым записям, превышают аналогичные значения по аналоговым записям, причем наиболее отчетливо у второго землетрясения с большей магнитудой.

Очаговые спектры смещений (станционные спектры, приведенные к очагу) по цифровым записям станции Обнинск для исследованных землетрясений показаны на рис.2.

В последнее время на основе сейсмических моментов  $M_0$  рассчитываются так называемые моментные магнитуды  $M_w$  [7,8] по формуле:

$$M_w = 2/3 \log M_0 - 10.7$$
, (1)

так как из-за насыщения шкалы стандартных магнитуд MS, особенно для сильных низкочастотных землетрясений, значения MS оказываются существенно заниженными. Определения магнитуд  $M_{\rm w}$  по (1) для исследуемых землетрясений с использованием значений  $M_{\rm o}$  из табл. 2 были сравнены с аналогичными магнитудами  $M_{\rm w}$ , полученными с использованием значений Mo из корелляционной зависимости:

$$\log M_o = 1.46 \text{ MS} + 16.53$$
 . (2)

Зависимость (2) найдена для землетрясений региона Крым - Кавказ - Копетдаг в интервале магнитуд MS = 3.5-7.5 [9]. Сопоставление магнитуд MW представлено на рис.3. Расчеты показывают, что в интервале  $M_w$  от 6 до 8 разница между  $M_w(MS)$  и  $M_w(M_0)$  не превышает 0.2 единиц магнитуды, т.е. находится в пределах случайной ошибки вычислений. Это может свидетельствовать о возможной применимости (2) не только в указанном регионе для получения значений  $M_w$  из MS в интервале магнитуд 6-9 при отсутствии соответствующих  $M_0$ , что особенно важно для землетрясений исторического и ранне-инструментального периодов.



Рис. 3 Линейная корреляция моментных магнитуд, найденных разными способами

Элементы механизмов очагов 6 сильных событий, имевших место в Северной Евразии, помещены в разделе "Каталоги дополнительных параметров землетрясений" настоящего сборника. Стереограммы механизмов очагов в проекции нижней полусферы даны на рис.4.



**Рис. 4** Механизмы очагов землетрясений Нодальные линии (1), оси главных напряжений - сжатия Р (2) и растяжения Т (3). Нумерация дана в соответствии с табл.2.

Решения для них получены по знакам первых вступлений Р-волн ряда сейсмических станций, большая часть которых размещена в пределах изучаемой территории, с помощью программы А.С. Ландера и Ж.Я. Аптекман, написанной для персонального компьютера и представляющей более удобную для пользователя версию программы [10].

## Литература

- 1. Сейсмологический бюллетень (ежедекадный) за 1992 г. Обнинск: ОМЭ ИФЗ РАН, 1992, 1993.
- 2. Earthquake Data Report. Jan.- Dec. 1992. // U.S. Depart. Int. Geol. Surv., 1992, 1993.
- 3. **Захарова А.И., Чепкунас Л.С.** Динамические параметры очагов сильных землетрясений мира // Землетрясения в СССР в 1989 году. М: Наука, 1993. С. 211-220.
- 4. **Dziewonski A., Chou T. and Woodhouse J.** Determination of earthquake source parameters from waveform data for studies of global and regional seismicity // J. Geophys. Res..86.. 1983. P. 2825-2852.
- 5. **Аптекман Ж.Я.,** Дараган С.К., Долгополов Д.В. и др. Спектры Р-волн в задаче определения динамических параметров очагов землетрясений. Унификация исходных данных и процедуры расчета амплитудных спектров // Вулканология и сейсмология. 1985. N 2. C. 60-70.
- 6. **Аптекман Ж.Я., Захарова А.И., Зобин В.М. и др.** Спектры Р-волн в задаче определения динамических параметров очагов землетрясений. Переход от станционного спектра к очаговому и расчет динамических параметров очага. // Вулканология и сейсмология. N 2.1989. C. 66-79.

- 7. Kanamori H. The energy release in great earthquakes. // J. Geophys. Res.. 82. 1977. P. 2981-2997.
- 8. Hanks T.C. and Kanamori H. A moment-magnitude scale. // J. Geophys. Res.. 84. 1979. P. 2348-2350.
- Kondorskaja N.V., Zakharova A.I., Chepkunas L.S. Some aspects conserning moment magnitude. (in print). 1996.
- 10. **Старовойт О.Е., Чепкунас Л.С., Аптекман Ж.Я. и др.** Об определении механизма очагов на ЭВМ ЕС-1030 // Физика сейсмических волн и внутреннее строение Земли. М.: Наука, 1983. С. 86-91.