
Якутия

¹С.В. Шибаев, ^{1,2}А.А. Макаров, ¹А.С. Куляндина, ¹Р.М. Туктаров, ¹Н.Н. Старкова, ¹А.В. Наумова, ¹Д.М. Пересыпкин

¹ЯФ ФИЦ ЕГС РАН, г. Якутск; ²ИГАБМ СО РАН, г. Якутск

В 2023 г. Якутский филиал (ЯФ) ФИЦ ЕГС РАН проводил исследование сейсмичности территории Республики Саха (Якутия) на основе системы инструментальных наблюдений, состоящей из 22 цифровых сейсмических станций. Относительно 2022 г. [1] в составе сети произошли изменения. В июле 2023 г. станция «Витим» была закрыта. Расположение пунктов регистрации показано на рис. I.27, информация о станциях приведена в табл. I.21.

Представительность регистрации землетрясений преимущественно совпадала с уровнем 2022 г., однако для западной части Якутии в бассейне среднего и нижнего течения рек Лены, Вилюя и Оленька зона регистрации $K_P \ge 8-9$ уменьшилась в связи сокращением сети станций [1]. Для Южной Якутии порог представительности увеличивается с запада на восток. Так, на западном фланге сохранился представительный класс землетрясений $K_P \ge 7$, в средней части $-K_P \ge 8$, для восточного фланга $-K_P \ge 10-11$. На северовостоке Якутии в горной системе хребта Черского и в арктических районах без пропусков регистрировались события с $K_P \ge 8$. В районе Тикси и на шельфе моря Лаптевых от полуострова Таймыр до Новосибирских островов существующая система наблюдений могла регистрировать без пропусков сейсмические события, начиная с $K_P \ge 10$. В целом для всего Якутского региона полностью регистрировались землетрясения с $K_P \ge 11-12$.

Рис. І.27. Сейсмические станции на территории Якутии в 2023 г. Черный шрифт – международные коды центра и станций

Таблица 1.21. Сведения о сейсмических станциях ЯФ ФИЦ ЕГС РАН

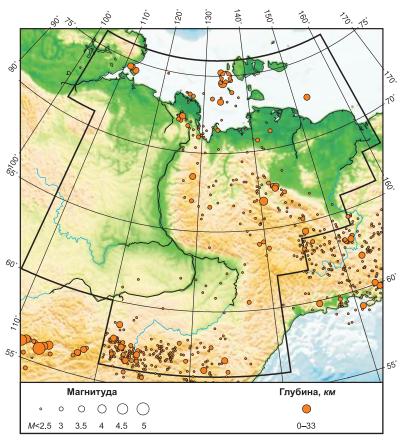
	Сейсмическая станция			Дата	Координаты и высота над уровнем моря				
№	название станции, код центра/ сети	ко между- народ- ный	од регио- наль- ный	открытия— закрытия (модерни- зации ¹)	φ, °N	λ, °E	h, м	Подпочва	Тип оборудования
1	Алдан YAGSR/RY	ALDR	ALD	01.10.1999 (09.2023)	58.610	125.410	662	Крупная галька, глина, вечная мерзлота	СМЕ-6211+ Байкал-8; СМЕ-6211+ Ермак-5
2	Батагай YAGSR/RY	BTGS	BTG	12.03.1975 (16.11.2020)	67.656	134.625	127	Глина, гравий, вечная мерзлота	СМЕ-6211+ Байкал-8
3	Белая Гора YAGSR/RY	YBGR	BGR	12.08.2011 (04.03.2018)	68.532	146.193	36	Глина, вечная мерзлота	KS-2000+ Байкал-8
4	Булуус YAGSR/RY	BLSR	BLS	27.03.2012 (03.2018)	61.360	129.030	90	Галька	СМЕ-6211+ Байкал-8
5	Витим YAGSR/RY	VTMR	VTM	16.06.2003- 01.07.2023	59.440	112.550	188	Суглинок	CMG-3ESPC+ CD-24
6	Депутатский YAGSR/RY	DEPR	DEP	27.08.2003 (10.07.2018)	69.390	139.900	320	Вечная мерзлота	СМЕ-6011+ Байкал-8
7	Мома YAGSR/RY	MOMR	MOM	05.03.1983 (13.04.2018)	66.467	143.217	192	Глина, гравий, вечная мерзлота	KS-2000+ Байкал-8
8	Олёкминск YAGSR/RY	OLMR	OLM	11.06.2010 (03.07.2019)	60.376	120.463	45	Песок, вечная мерзлота	СМЕ-6211+ Байкал-8
9	Столб YAGSR/RY	SOTR	SOT	16.08.2013 (14.09.2018)	72.403	126.812	50	Алевролиты, вечная мерзлота	СМЕ-6011+ Байкал-8
10	Табага YAGSR/RY	TBGR	TBG	24.06.2003 (22.06.2022)	61.821	129.637	98	Вечная мерзлота	CME-6211+ Centaur+
11	Тикси YAGSR/IU+ IRIS/USGS, IMS CTBTO	TIXI	TIX	15.08.1995 (24.09.2017)	71.649	128.867	50	Доломиты, квар- циты, вечная мерзлота	STS-1, STS-2.5+ Q330-HR
12	Тында YAGSR/RY	TNDR	TND	20.06.2001 (13.08.2019)	55.147	124.721	530	Галька, глина	СМЕ-6011+ Байкал-8
13	Усть-Мая2 YAGSR/RY	_	USM	08.04.2006 (08.12.2019)	60.367	134.458	170	Глина, вечная мерзлота	KS-2000+ Байкал-8
14	Усть-Нера YAGSR/RY	UNR	UNR	21.11.1961 (10.09.2018)	64.566	143.228	485	Суглинки, веч- ная мерзлота	СМЕ-6211+ Байкал-8
15	Хани YAGSR/RY	KHNR	KHN	11.12.2005 (07.2022)	56.921	119.979	690	Гранитогнейсы	KS-2000+ Байкал-8
16	Чагда YAGSR/RY	CGD	CGD	01.08.1968 (11.2015)	58.752	130.609	195	Галька, глина, вечная мерзлота	СМ-3КВ+ Байкал-11
17	Чернышев- ский YAGSR/RY	YCRN	CRN	14.07.2011	63.021	112.486	319	Галька, гравий	KS-2000+ Байкал-8
18	Чульман YAGSR/RY	CLNS	CHL	01.07.1963 (06.2015)	56.837	124.893	745	Песчаник	CMG-3ESPC+ CD-24
19	Юктали YAGSR/RY	YKLR	YKL	04.07.2004 (09.2013)	56.592	121.654	417	Суглинок	CMG-3ESPC+ CD-24

_

 $^{^{1}}$ Показана дата последней модернизации, предыдущие см. в [1].

№	Сейсмическая станция			Дата	Координаты и высота над уровнем моря				
	название станции, код центра/ сети	ко между- народ- ный	регио- наль- ный	открытия— закрытия (модерни- зации ¹)	φ, °N	λ, °E	h, м	Подпочва	Тип оборудования
20	Якутск YAGSR/IU+ IRIS/USGS, IMS CTBTO	YAK	YAK	05.10.1957 (24.09.2017)	62.031	129.680	91	Песчаник, вечная мерзлота	STS-1, STS-2.5+ Q330-HR
21	D001 Денисовская-1 YAGSR/RY	DN01	DN01	19.04.2022 (02.2023)	56.771	124.836	732	Гравий, песок	CME-4011+ Байкал-8; Trillium+ +Байкал-8
22	D002 Денисовская-2 YAGSR/RY	DN02	DN02	(02.2023)	56.752	124.890	757	Уголь	CME-4011+ Байкал-8; Trillium+ +Байкал-8
23	D003 Денисовская-3 YAGSR/RY	DN03	DN03	20.04.2022 (02.2023)	56.742	124.835	836	Песок	CME-4011+ Байкал-8; Trillium+ +Байкал-8

Кроме материалов цифровых сейсмограмм землетрясений, полученных сетью станций ЯФ ФИЦ ЕГС РАН, к сводной обработке были привлечены бюллетени отдельных станций и результаты сводной обработки структурных подразделений ФИЦ ЕГС РАН в Сибири и на Дальнем Востоке Российской Федерации – Магаданского, Байкальского и Сахалинского филиалов. Для определения параметров эпицентров землетрясений использовался программный комплекс WSG [2].


В электронном каталоге сейсмических событий Якутского региона приведены параметры 457 землетрясений с M=1.7–5.1 (KP=7.1–13.2) (в т.ч. три — по данным центра NEGSR) [3] и 796 взрывов с M=1.7–3.2 (KP=7.0–9.8) (в т.ч. два — по данным центра NEGSR) [4]. Все подземные толчки происходили в пределах земной коры на глубине до 34 κ M. Для 42 событий в каталоге [3] опубликованы альтернативные решения центров NEGSR (17 землетрясений и 21 взрыв) и FCIAR (четыре землетрясения). В печатном варианте каталога землетрясений [5] опубликованы параметры 71 события региона с M≥2.8. Печатный вариант каталога взрывов [6] содержит данные 69 промышленных взрывов с M≥2.5 (ред.).

На основе каталога землетрясений [3] построена карта эпицентров (рис. I.28).

На соседних территориях центром YAGSR были определены параметры 23 сейсмических событий: 21 землетрясения – на Северо-Востоке России и Чукотке (в т.ч. четыре добавлены в каталог [7] в качестве совместного решения с центром NEGSR, 17 – в качестве альтернативных решений); двух землетрясений – в Арктике (добавлены в каталог [8] в качестве альтернативного решения) (ред.).

Пространственное положение эпицентров землетрясений в 2023 г. повторяет их распределение в 2022 г. [1]. Они группируются в двух сейсмических поясах: Арктико-Азиатском на северо-востоке и Олёкмо-Становом (восточный фланг Байкало-Станового пояса) на юге региона, которые разделяют Евразийскую, Североамериканскую и Амурскую литосферные плиты [9, 10].

Сейсмичность северо-востока региона была проявлена в Арктико-Азиатском сейсмическом поясе, динамика которого обусловлена взаимодействием Евразийской и Североамериканской плит [1, 9]. Наибольшая сейсмическая активность зафиксирована в районе дельты реки Лена (дельта р. Лены и губа Буор-Хая), в море Лаптевых и системе хребтов Черского.

Рис. I.28. Карта эпицентров землетрясений на территории Якутии в 2023 г. Звездочкой показано самое сильное землетрясение в регионе

В море Лаптевых в районе Новосибирских островов 13 июля в $13^{\rm h}06^{\rm m}$ произошло самое сильное землетрясение Якутского региона за 2023 г. с M=5.1 ($K_{\rm P}$ =13.2). Эпицентр данного события приурочен к активной сейсмической структуре – хребту Гаккеля. Через 25 минут на расстоянии ~197 κM в юго-западном направлении от главного толчка зарегистрирован афтершок с M=2.8 ($K_{\rm P}$ =9.1). 7 февраля в $14^{\rm h}15^{\rm m}$ на расстоянии около 193 κM к юго-западу от события 13 июля был зафиксирован его вероятный форшок – второе по силе землетрясение региона с M=3.9 ($K_{\rm P}$ =11.1).

Два сильных сейсмических толчка были зафиксированы в районе горной системы Черского. Очаг первого землетрясения с M=3.7 (KP=10.6) зарегистрирован 6 мая в $05^{\rm h}47^{\rm m}$ на юго-восточной окраине Арктико-Азиатского сейсмического пояса, ему предшествовал форшок с M=2.6 (KP=8.6) 5 мая в $18^{\rm h}07^{\rm m}$ с эпицентром в $10~\kappa m$ к юго-западу от основного события. Эти события приурочены к эпицентральной зоне Артыкского землетрясения 1971 г. [11]. Второе землетрясение с M=3.8 (KP=10.8) произошло 31 августа в $16^{\rm h}33^{\rm m}$ на глубине $16~\kappa m$ и приурочено к Арга-Тасскому разлому [10].

Южная Якутия характеризуется умеренным уровнем сейсмичности, эпицентры землетрясений здесь протянулись в субширотном направлении с запада на восток более чем на 700 κm от реки Олёкмы к Охотскому морю. Самое сильное землетрясение на территории Олёкмо-Становой зоны с M=3.5 (KP=10.3) произошло 24 января в $09^{\rm h}09^{\rm m}$ на ее восточном фланге и приурочено к левобережью реки Тыркан в пределах Токинской впадины. Однако наибольшее количество землетрясений (N=9) с KP \geq 9.5 было зафиксировано на западном фланге этой зоны.

Следует отметить повышение уровня сейсмичности региона в 2023 году. В пределах Олёкмо-Становой зоны наблюдается снижение максимального энергетического класса, однако это компенсируется увеличением количества событий. В Арктико-Азиатском сейсмическом поясе зафиксирована активация юго-восточного фланга и хребта Гаккеля в районе Новосибирских островов.

На рис. I.29 показана гистограмма суммарной сейсмической энергии, выделившейся на территории Якутии в 2019—2023 гг. (по данным [1, 3]). Уровень сейсмичности региона в 2023 г. согласно шкале «СОУС'09» [12] оценен как «фоновый средний» за 56летний период наблюдений (с 1968 по 2023 г.) [13].

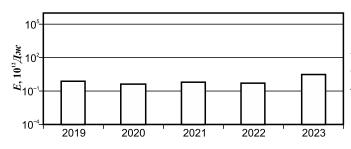


Рис. I.29. Распределение сейсмической энергии, выделившейся на территории Якутии в 2019–2023 гг.

Литература

- 1. Шибаев С.В., Макаров А.А, Туктаров Р.М., Куляндина А.С., Пересыпкин Д.М., Наумова А.В., Старкова Н.Н. Результаты сейсмического мониторинга различных регионов России. Якутия // Землетрясения России в 2022 году. Обнинск: ФИЦ ЕГС РАН, 2024. С. 68–73. EDN: AVQQYV
- 2. Акимов А.П., Красилов С.А. Программный комплекс WSG «Система обработки сейсмических данных» / Свидетельство о государственной регистрации программы для ЭВМ № 2020664678 от 16.11.2020 г. EDN: IJOVUE
- 3. 2023-ER_App15_Yakutia.xlsx [Электронный ресурс]: Список приложений для ежегодника «Землетрясения России в 2023 году» // Землетрясения России [сайт]. [Обнинск: ФИЦ ЕГ РАН, 2025]. Систем. требования: MS Excel, Open Office. URL: http://www.gsras.ru/zr/app_23.html, свободный.
- 4. 2023-ER_App25_Catalogs_explosions.xlsx [Электронный ресурс]: Список приложений для ежегодника «Землетрясения России в 2023 году» // Землетрясения России [сайт]. [Обнинск: ФИЦ ЕГС РАН, 2025]. Систем. требования: MS Excel, Open Office. URL: http://www.gsras.ru/zr/app 23.html, свободный.
- 5. Макаров А.А., Старкова Н.Н. (отв. сост.); Куляндина А.С., Туктаров Р.М., Андреева С.А., Денега Е.Г., Хастаева Е.В. Каталоги землетрясений по различным регионам России. Якутия // Землетрясения России в 2023 году. Обнинск: ФИЦ ЕГС РАН, 2025. С. 182—183.
- 6. Сведения о наиболее крупных промышленных взрывах // Землетрясения России в 2023 году. Обнинск: ФИЦ ЕГС РАН, 2025. С. 204–216.
- 7. 2023-ER_App16_North-East-region-of-Russia.xlsx [Электронный ресурс]: Список приложений для ежегодника «Землетрясения России в 2023 году» // Землетрясения России [сайт]. [Обнинск: ФИЦ ЕГС РАН, 2025]. Систем. требования: MS Excel, Open Office. URL: http://www.gsras.ru/zr/app 23.html, свободный.
- 8. 2023-ER_App05_Arctic-Basin.xlsx [Электронный ресурс]: Список приложений для ежегодника «Землетрясения России в 2023 году» // Землетрясения России [сайт]. [Обнинск: ФИЦ ЕГС РАН, 2025]. Систем. требования: MS Excel, Open Office. URL: http://www.gsras.ru/zr/app 23.html, свободный.
- 9. Имаев В.С., Имаева Л.П., Козьмин Б.М. Сейсмотектоника Якутии. М.: ГЕОС, 2000. 226 с.
- 10. Имаева Л.П., Имаев В.С., Козьмин Б.М., Мельникова В.И., Середкина А.И., Маккей К.Д., Ашурков С.В., Смекалин О.П., Овсюченко А.Н., Чипизубов А.В., Сясько А.А. Сейсмотектоника северо-восточного сектора Российской Арктики. Новосибирск: «Издательство СО РАН», 2017. 136 с.
- 11. Fujita K., Kozmin B.M., Mackey K.G., Riegel S.A., Mclean M.S., Imaev V.S. Seismotectonics of the Chersky seismic belt, eastern Sakha Republic (Yakutia) and Magadan district, Russia // Stephan Mueller Special Publication Series. 2009. V. 4. P. 117–145. DOI: 10.5194/smsps-4-117-2009
- 12. Saltykov V.A. A statistical estimate of seismicity level: The method and results of application to Kamchatka // Journal of Volcanology and Seismology. 2011. V. 5, N 2. P. 123—128. DOI: 10.1134/S0742046311020060. EDN: OHTIXN
- 13. Салтыков В.А., Коновалова А.А., Пойгина С.Г. Качественный анализ сейсмичности. Оценка уровня сейсмичности регионов России // Землетрясения России в 2023 году. Обнинск: ФИЦ ЕГС РАН, 2025. С. 97–108.