Якутия

¹С.В. Шибаев, ^{1,2}Б.М. Козьмин, ¹А.С. Куляндина, ^{1,2}А.А. Макаров, ¹Р.М. Туктаров, ¹Д.М. Пересыпкин, ¹А.В. Наумова, ¹Н.Н. Старкова ¹ЯФ ФИЦ ЕГС РАН, г. Якутск; ²ИГАБМ СО РАН, г. Якутск

Якутский филиал ФИЦ ЕГС РАН проводил исследования сейсмичности Республики Саха (Якутия) сетью инструментальных наблюдений, состоящей из 20 цифровых сейсмических станций. В течение 2021 г. данная сеть станций не изменяла свою локацию в сравнении с 2020 г., как и установленное на них типовое оборудование [1, 2]. Расположение пунктов регистрации показано на рис. I.24, информация о станциях приведена в табл. I.19.

В связи с завершением Международного российско-германского проекта "Seismicity and neotectonics of Laptev Sea region (SIOLA)" («Сейсмичность и неотектоника региона моря Лаптевых») в августе-сентябре 2020 г. были свернуты все 25 полевых сейсмостанций, которые регистрировали в рамках проекта местные землетрясения в арктических районах Якутии (дельта р. Лена).

Рис. I.24. Сейсмические станции на территории Якутии в 2021 г. Черный шрифт – международные коды сети (центра) и станций, зеленый шрифт – региональный код станции

Таблица 1.19. Сведения о сейсмических станци	иях ЯФ ФИЦ ЕГС РАН (cemь YAGSR)
,	

	Сейсмическая станция			Лата	Координаты и высота нал уровнем моря				
N⁰	название станции, код сети	кс меж- дуна- родный	од регио- наль- ный	открытия (модерни- зации ¹)	φ, °N	λ, °E	h, м	Подпочва	Тип оборудования
1	Алдан	ALDR	ALD	01.10.1999 (12.2018)	58.610	125.410	662	Крупная галька, глина, вечная мерзлота	СМЕ-6211+ Байкал-8
2	Батагай	BTGS	BTG	12.03.1975 (16.11.2020)	67.656	134.625	127	Глина, гравий, вечная мерзлота	СМЕ-6211+ Байкал-8
3	Белая Гора	YBGR	BGR	12.08.2011 (04.03.2018)	68.532	146.193	36	Глина, вечная мерзлота	KS-2000+ Байкал-8
4	Булуус	BLSR	BLS	27.03.2012 (03.2018)	61.360	129.030	90	Галька	СМЕ-6211+ Байкал-8
5	Витим	VTMR	VTM	16.06.2003 (06.2012)	59.440	112.550	188	Суглинок	CMG-3ESPC+ CD-24
6	Депутатский	DEPR	DEP	27.08.2003 (10.07.2018)	69.390	139.900	320	Вечная мерзлота	СМЕ-6011+ Байкал-8
7	Мома	MOMR	MOM	05.03.1983 (13.04.2018)	66.467	143.217	192	Глина, гравий, вечная мерзлота	KS-2000+ Байкал-8
8	Олёкминск	OLMR	OLM	11.06.2010 (03.07.2019)	60.376	120.463	45	Песок, вечная мерзлота	СМЕ-6211+ Байкал-8
9	Столб	SOTR	SOT	16.08.2013 (14.09.2018)	72.403	126.812	50	Алевролиты, вечная мерзлота	СМЕ-6011+ Байкал-8
10	Табага	TBGR	TBG	24.06.2003 (02.10.2018)	61.821	129.637	98	Вечная мерзлота	СМЕ-6211+ Байкал-8
11	Тикси YAGSR, GSN, IMS CTBTO	TIXI	TIX	15.08.1995 (24.09.2017)	71.649	128.867	50	Доломиты, квар- циты, вечная мерзлота	STS-1, STS-2.5+ Q330-HR
12	Тында	TNDR	TND	20.06.2001 (13.08.2019)	55.147	124.721	530	Галька, глина	СМЕ-6011+ Байкал-8
13	Усть-Мая 2	-	USM	08.04.2006 (08.12.2019)	60.367	134.458	170	Глина, вечная мерзлота	KS-2000+ Байкал-8
14	Усть-Нера	UNR	UNR	21.11.1961 (10.09.2018)	64.566	143.228	485	Суглинки, веч- ная мерзлота	СМЕ-6211+ Байкал-8
15	Хани	KHNR	KHN	11.12.2005	56.921	119.979	690	Гранитогнейсы	СМ-3КВ+ Байкал-112
16	Чагда	CGD	CGD	01.08.1968 (11.2015)	58.752	130.609	195	Галька, глина, вечная мерзлота	СМ-3КВ+ Байкал-11
17	Чернышев- ский	YCRN	CRN	14.07.2011	63.021	112.486	319	Галька, гравий	KS-2000+ Байкал-8
18	Чульман	CLNS	CHL	01.07.1963 (06.2015)	56.837	124.893	745	Песчаник	CMG-3ESPC+ CD-24
19	Юктали	YKLR	YKL	04.07.2004 (09.2013)	56.592	121.654	417	Суглинок	CMG-3ESPC+ CD-24
20	Якутск YAGSR, GSN, IMS CTBTO	YAK	YAK	05.10.1957 (24.09.2017)	62.031	129.680	91	Песчаник, вечная мерзлота	STS-1, STS-2.5+ Q330-HR

¹ Показана дата последней модернизации, предыдущие см. в [1].

После обработки инструментальных данных стационарных станций был составлен каталог землетрясений за 2021 год. Параметры очагов землетрясений рассчитывались с использованием программного комплекса WSG [3] и привлечением данных с пограничных пунктов регистрации Байкальского, Сахалинского и Магаданского филиалов ФИЦ ЕГС РАН. Представительность регистрации землетрясений для большей части территории соответствовала ее порогу в 2019–2020 гг. [1, 2]. В Южной Якутии были представительны события с $K_P \ge 7$ для ее западной и с $K_P \ge 8-9$ – для восточной части территории. На северо-востоке Якутии от побережья моря Лаптевых до Северного Приохотья (границы с регионом «Северо-Восток России и Чукотка») без пропусков фиксировались местные толчки с $K_P \ge 8$. В целом для всего Якутского региона полностью регистрировались землетрясения с $K_P \ge 11-12$. В дельте р. Лена в связи с окончанием Международного проекта "SIOLA" и прекращением полевых работ запись землетрясений проводилась на стационарных станциях «Тикси» и «Столб», что привело к смене уровня представительной регистрации сигналов с $K_P \ge 7$ на $K_P \ge 8-9$.

В электронном каталоге сейсмических событий Якутского региона [4] приведены параметры 398 землетрясений с M=1.6–4.2 (K_P =6.8–11.6) (в том числе одно – по данным центра NEGSR и одно – по данным SAGSR) и 288 взрывов с M=1.7–2.6 (K_P =7.0–8.6), которые продублированы в сводный каталог взрывов [5]. Для 13 землетрясений в каталоге помещены альтернативные решения центра NEGSR. Выявленные подземные толчки происходили в пределах земной коры на глубинах до 30 км. В печатном варианте каталога землетрясений [6] опубликованы параметры 139 событий с M≥2.5. Печатный вариант каталога взрывов [7] содержит данные 52 промышленных взрывов с M≥2.0. На основе каталога землетрясений [4] построена карта эпицентров (рис. I.25).

Рис. I.25. Карта эпицентров землетрясений на территории Якутии в 2021 г. Звездочкой показано самое сильное землетрясение в регионе

На соседних приграничных территориях центром YAGSR были определены параметры 20 землетрясений: 16 – на территории региона Северо-Востока России (в т.ч. три добавлены в каталог [8] в качестве основных решений, 13 – в качестве альтернативных решений); четыре – в Арктике (добавлены в каталог [9] в качестве альтернативных решений).

Проявления Якутских землетрясений в 2021 г., как и в 2020 г., наблюдались в пределах границ двух известных сейсмических поясов – Арктико-Азиатского на северо-востоке региона и в Арктике, а также на юге в Олёкмо-Становой сейсмической зоне (восточный фланг Байкало-Станового пояса), – которые разделяют между собой Евразийскую, Североамериканскую и Амурскую литосферные плиты [10, 11].

В течение исследуемого периода в регионе выявлена незначительная активизация сейсмотектонического процесса, проявившаяся в увеличении в 2021 г. числа (*N*=36) зарегистрированных подземных толчков с *M*≥3.1 (*K*_P≥9.5) в 1.3 раза в сравнении с 2020 г., когда их количество достигало *N*=27 [12]).

Наибольшая концентрация очагов землетрясений зафиксирована в Олёкмо-Становой зоне (ОСЗ), продолжающей на восток Байкальскую рифтовую систему. Зона включает широкую (до 200 км) полосу сейсмических проявлений, приуроченных к области влияния крупного регионального Станового шва [10, 11], разграничивающего Евразийскую и Амурскую литосферные плиты в широтном направлении от Олёкмо-Чарского нагорья, граничащего с Байкальским рифтом, к Охотскому морю. Здесь в направлении запад-восток выделяются два скопления эпицентров землетрясений наиболее активный западный участок между меридианами 120 и 129°E и слабоактивный восточный – между меридианами 129 и 136°Е. На территории первого из них выявлено свыше 100 подземных толчков, среди которых к интенсивным относятся событие 10 ноября в 13^h19^m с *M*=3.6 (*К*_P=10.4) на Олёкмо-Чарском нагорье, толчок 16 мая в 23^h58^m с *M*=3.2 (*К*_P=9.7) в Становом хребте и самое крупное в ОСЗ ощутимое землетрясение, возникшее 18 января в 18^h46^m с *M*=4.1 (*K*_P=11.4). Оно произошло (около 4 час. утра по местному времени) на Алданском нагорье. Очаг располагался на глубине $h=13 \ \kappa m$, расчетная интенсивность в эпицентре составила $I_{0p}=5-6$ баллов по шкале MSK-64. Землетрясение получило название Нимнырского, т.к. эпицентр располагался в ненаселенной местности вблизи ручья Большой Нимныр, правого притока р. Алдан к юго-востоку от Томмотской гряды. Несмотря на ночное время, когда все население спало, удалось собрать макросейсмические данные в девяти населенных пунктах, расположенных вдоль и вблизи Федеральной автодороги «Лена». С интенсивностью от 2 до 5 баллов оно ощущалось на площади более 12 тыс. км², в т.ч. в пос. Большой Нимныр (50 км) – 4–5 баллов; Алдан (80 км), пос. Ленинский (80 км) – 4 балла; пос. Ыллымах (57 км), пос. Большой Хатыми (112 км) – 3–4 балла; Томмот (97 км), дер. Хатыстыр (113 км), пос. Чульман (163 км) – 3 балла; Нерюнгри (185 км) – 2– 3 балла [4, 6].

На восточном участке ОСЗ число произошедших сейсмопроявлений едва достигало N=30 с M=2.2-2.8 ($K_P=8-9$). Они группировались в истоках р. Учур при пересечении рекой хребта Лурикан. На северном фланге хр. Сетте-Дабан имела место небольшая активизация в виде редкой серии из десяти подземных толчков, среди которых выделяется землетрясение 30 октября в $19^{h}22^{m}$ с M=3.8 ($K_P=10.9$).

В Арктико-Азиатском поясе (северо-восток и арктические районы Якутии) продолжалась регистрация рассеянного поля сейсмичности, идентичного его распределению в 2020 г. [2, 4]. Отмечается миграция эпицентров вдоль разломных структур, развитых на юго-восточном фланге в системе хребта Черского: Илин-Тасский надвиг, сдвиги Улахан и Чай-Юреинский и др. Эпицентры землетрясений группируются в три кластера. Самый крупный из них образует субширотное «облако» афтершоков (*N*=19) Илин-Тасского (Абыйского) землетрясения 2013 г. [13], проявляющихся до сих пор. Самый заметный из них произошел 3 сентября $16^{h}38^{m}$ с M=3.4 ($K_{P}=10.1$) на глубине 20 км. Второй кластер в виде цепочки эпицентров (N=10) с M=2.2-3.3 ($K_{P}=8-10$) протянулся на юго-восток от Буордахского массива позднеюрского возраста на правобережье р. Индигирки вдоль разлома Улахан до границы с зоной ответственности центра NEGSR. Третий кластер представляет группу слабых сотрясений M=2.2-2.8 ($K_{P}=8-9$), тяготеющую к Верхненерской кайнозойской впадине на границе с Магаданской областью, возможно, указывая на активизацию зоны 9-балльного Артыкского землетрясения с Mw=6.6 (7.0), имевшего место в 1971 г. [11, 14].

Из других активных участков следует отметить ансамбль небольших разобщенных событий с M=2.2-2.8 ($K_P=8-9$) на территории Яно-Оймяконского нагорья и в верховьях р. Адычи (притока р. Яны). Более интенсивные события произошли в Северном Верхоянье, где 17 апреля в $01^{h}36^{m}$ с M=3.7 ($K_P=10.6$) и 25 сентября в $02^{h}56^{m}$ с M=3.8 ($K_P=10.8$) возникли два толчка, пространственно примыкающие к зоне давних Булунских землетрясений 1927–1928 гг. с MS=5.8-6.8 [14].

Северный фрагмент карты эпицентров занимают очаги землетрясений в дельте р. Лены, в акватории моря Лаптевых и примыкающих к ним прибрежных районов суши. Их общее число не превышает 70. Лучше других здесь выделяется субдолготная группа эпицентров, пересекающая Оленёкскую протоку в дельте Лены и расположенный южнее кряж Чекановского. Среди них самым интенсивным было событие 13 июня в $04^{h}28^{m}$ с M=4.2 ($K_{P}=11.6$), которое стало самым сильным землетрясением региона в 2021 году. Там же отмечены еще два более слабых удара – 7 июля в $03^{h}16^{m}$ с M=3.3 ($K_{P}=10.0$) и 30 декабря в $06^{h}59^{m}$ с M=3.4 ($K_{P}=10.2$).

В итоге следует отметить присутствие небольших флюктуаций сейсмической активности в регионе в 2021 г. в сравнении с предыдущими пятилетними наблюдениями. В известной степени это связано не только с постоянно изменяющимся уровнем сейсмичности, но и с редкой сетью сейсмостанций и низкой представительностью регистрируемых событий. Особенно наглядно это обнаруживается на примере мониторинга сейсмичности в дельте р. Лена. Закрытие 25 полевых пунктов наблюдений по окончанию совместного российско-германского проекта ухудшило возможности полной регистрации землетрясений на два порядка с *К*р=7 до *К*р=9.

На рис. I.26 показана гистограмма суммарной сейсмической энергии, выделившейся на территории Якутии в 2017–2021 гг. (по данным [2, 4]). Уровень сейсмичности региона в 2021 г. согласно шкале «СОУС'09» [15] оценен как «фоновый средний» за 54-летний период наблюдений (с 1968 по 2021 г.) [16].

Литература

1. Шибаев С.В., Козьмин Б.М., Макаров А.А., Пересыпкин Д.М., Наумова А.В., Старкова Н.Н. Результаты сейсмического мониторинга различных регионов России. Якутия // Землетрясения России в 2019 году. – Обнинск: ФИЦ ЕГС РАН, 2021. – С. 61–66. – EDN: ETBPIK

2. Шибаев С.В., Козьмин Б.М., Куляндина А.С., Макаров А.А., Туктаров Р.М., Пересылкин Д.М., Наумова А.В., Старкова Н.Н. Результаты сейсмического мониторинга различных регионов России. Якутия // Землетрясения России в 2020 году. – Обнинск: ФИЦ ЕГС РАН, 2022. – С. 62–67. – EDN: HCSRAH 3. Акимов А.П., Красилов С.А. Программный комплекс WSG «Система обработки сейсмических данных» / Свидетельство о государственной регистрации программы для ЭВМ № 2020664678 от 16.11.2020 г. – EDN: IJOVUE

4. 2021-ER_App14_Yakutia.xls [Электронный ресурс]: Список приложений для ежегодника «Землетрясения России в 2021 году» // Землетрясения России [сайт]. – [Обнинск: ФИЦ ЕГ РАН, 2023]. Систем. требования: MS Excel, Open Office. – URL: http://www.gsras.ru/zr/app_21.html, свободный.

5. 2021-ER_App24_Catalogs_explosions.xls [Электронный ресурс]: Список приложений для ежегодника «Землетрясения России в 2021 году» // Землетрясения России [сайт]. – [Обнинск: ФИ ЕГС РАН, 2023]. Систем. требования: MS Excel, Open Office. – URL: http://www.gsras.ru/zr/ арр 21.html, свободный.

6. Козьмин Б.М., Старкова Н.Н. (отв. сост.); Куляндина А.С., Туктаров Р.М., Андреева С.А., Денега Е.Г., Хастаева Е.В. Каталоги землетрясений по различным регионам России. Якутия // Землетрясения России в 2021 году. – Обнинск: ФИЦ ЕГС РАН, 2023. – С. 174–176.

7. Сведения о наиболее крупных промышленных взрывах // Землетрясения России в 2021 году. – Обнинск: ФИЦ ЕГС РАН, 2023. – С. 192–203.

8. 2021-ER_App15_North-East-region-of-Russia.xls [Электронный ресурс]: Список приложений для ежегодника «Землетрясения России в 2021 году» // Землетрясения России [сайт]. – [Обнинск: ФИЦ ЕГС РАН, 2023]. Систем. требования: MS Excel, Open Office. – URL: http://www.gsras.ru/zr/app_21.html, свободный.

9. 2021-ER_App04_Arctic-Basin.xls [Электронный ресурс]: Список приложений для ежегодника «Землетрясения России в 2021 году» // Землетрясения России [сайт]. – [Обнинск: ФИЦ ЕГС РАН, 2023]. Систем. требования: MS Excel, Open Office. – URL: http://www.gsras.ru/ zr/app_21.html, свободный.

10. Козьмин Б.М., Имаев В.С., Имаева Л.П. Сейсмичность и современная геодинамика // Тектоника, геодинамика и металлогения территории Республики Саха (Якутия). – М.: МАИК «Наука/Интерпериодика», 2001. – С. 33–67. – EDN: UVYTIR

11. Имаев В.С., Имаева Л.П., Козьмин Б.М. Сейсмотектоника Якутии. – М.: ГЕОС, 2000. – 226 с. – EDN: TIOCPL

12. 2020-ER_App14_Yakutia.xls [Электронный ресурс]: Список приложений для ежегодника «Землетрясения России в 2020 году» // Землетрясения России [сайт]. – [Обнинск: ФИЦ ЕГ РАН, 2022]. Систем. требования: MS Excel, Open Office. – URL: http://www.gsras.ru/zr/app_20.html, свободный.

13. Шибаев С.В., Козьмин Б.М., Петров А.Ф., Тимириин К.В., Пересыпкин Д.М., Лысова Г.В., Старкова Н.Н. Результаты сейсмического мониторинга различных регионов России. Якутия // Землетрясения России в 2013 году. – Обнинск: ГС РАН, 2015. – С. 49–53. – EDN: VBAEQH

14. Новый каталог сильных землетрясений на территории СССР с древнейших времён до 1975 г. / Под ред. Н.В. Кондорской, Н.В. Шебалина. – М.: Наука, 1977. – 536 с.

15. *Салтыков В.А.* Статистическая оценка уровня сейсмичности: методика и результаты применения на примере Камчатки // Вулканология и сейсмология. – 2011. – № 2. – С. 53–59. – EDN: NSYPHR

16. Салтыков В.А., Коновалова А.А., Кравченко Н.М., Пойгина С.Г. Качественный анализ сейсмичности. Оценка уровня сейсмичности регионов России // Землетрясения России в 2021 году. – Обнинск: ФИЦ ЕГС РАН, 2023. – С. 88–94.