Якутия

¹С.В. Шибаев, ^{1,2}Б.М. Козьмин, ¹А.С. Куляндина, ^{1,2}А.А. Макаров, ¹Р.М. Туктаров, ¹Д.М. Пересыпкин, ¹А.В. Наумова, ¹Н.Н. Старкова

 1 Я
Ф ФИЦ ЕГС РАН, г. Якутск; 2 ИГАБМ СО РАН, г. Якутск

Якутский филиал (ЯФ) ФИЦ ЕГС РАН проводил исследования сейсмичности Республики Саха (Якутия) сетью инструментальных наблюдений, состоящей из 20 цифровых сейсмических станций. Были проведены модернизация, ремонт и замена аппаратуры на двух сейсмических станциях (ВТG и USM). Расположение пунктов регистрации показано на рис. I.24, информация о станциях приведена в табл. I.19.

В 2020 г. были продолжены локальные полевые исследования землетрясений в арктических районах Якутии в рамках проекта "Seismicity and neotectonics of Laptev Sea region (SIOLA)" («Сейсмичность и неотектоника региона моря Лаптевых») на 2016–2020 гг. Они проводились ЯФ ФИЦ ЕГС РАН (г. Якутск) совместно с Институтом океанологии им. П.П. Ширшова РАН (г. Москва) и Гельмгольтцским центром полярных и морских исследований Полярного института им. А. Вегенера (Германия). Полевые станции в основном располагались на западном берегу губы Буор-Хая моря Лаптевых и в районе Быковской протоки (дельта р. Лены). Одна из этих станций работала на о. Муостах в заливе Буор-Хая. Количество (25) пунктов наблюдений в сравнении с 2019 г. оставалось неизменным, как и тип используемой аппаратуры [1, 2].

Рис. I.24. Сейсмические станции на территории Якутии в 2020 г. Черный шрифт – международные коды сети (центра) и станций, зеленый шрифт – региональный код станции

	Сейсмическая станция			Дата	Координаты и высота над уровнем моря				
№	название станции, код сети	ко меж- дуна- родный	од регио- наль- ный	открытия– закрытия (модерни- зации ¹)	φ, °N	λ, °E	h, м	Подпочва	Тип оборудования
1	Алдан	ALDR	ALD	01.10.1999 (12.2018)	58.610	125.410	662	Крупная галька, глина, вечная мерзлота	СМЕ-6211+ Байкал-8
2	Батагай	BTGS	BTG	12.03.1975 (16.11.2020)	67.656	134.625	127	Глина, гравий, вечная мерзлота	СМЕ-6211+ РАR-4СН; СМЕ-6211+ Байкал-8
3	Белая Гора	YBGR	BGR	12.08.2011 (04.03.2018)	68.532	146.193	36	Глина, вечная мерзлота	KS-2000+ Байкал-8
4	Булуус	BLSR	BLS	27.03.2012 (03.2018)	61.360	129.030	90	Галька	СМЕ-6211+ Байкал-8
5	Витим	VTMR	VTM	16.06.2003 (06.2012)	59.440	112.550	188	Суглинок	CMG-3ESPC+ CD-24
6	Депутатский	DEPR	DEP	27.08.2003 (10.07.2018)	69.390	139.900	320	Вечная мерзлота	СМЕ-6011+ Байкал-8
7	Мома	MOMR	MOM	05.03.1983 (13.04.2018)	66.467	143.217	192	Глина, гравий, вечная мерзлота	KS-2000+ Байкал-8
8	Олёкминск	OLMR	OLM	11.06.2010 (03.07.2019)	60.376	120.463	45	Песок, вечная мерзлота	СМЕ-6211+ Байкал-8
9	Столб	SOTR	SOT	16.08.2013 (14.09.2018)	72.403	126.812	50	Алевролиты, вечная мерзлота	СМЕ-6011+ Байкал-8
10	Табага	TBGR	TBG	24.06.2003 (02.10.2018)	61.821	129.637	98	Вечная мерзлота	СМЕ-6211+ Байкал-8
11	Тикси YAGSR, GSN, IMS CTBTO	TIXI	TIX	15.08.1995 (24.09.2017)	71.649	128.867	50	Доломиты, квар- циты, вечная мерзлота	STS-1, STS-2.5+ Q330-HR
12	Тында	TNDR	TND	20.06.2001 (13.08.2019)	55.147	124.721	530	Галька, глина	СМЕ-6011+ Байкал-8
13	Усть-Мая 2	_	USM	08.04.2006 (08.12.2019)	60.367	134.458	170	Глина, вечная мерзлота	KS-2000+ Байкал-8
14	Усть-Нера	UNR	UNR	21.11.1961 (10.09.2018)	64.566	143.228	485	Суглинки, веч- ная мерзлота	СМЕ-6211+ Байкал-8
15	Хани	KHNR	KHN	11.12.2005	56.921	119.979	690	Гранитогнейсы	СМ-3КВ+ Байкал-112
16	Чагда	CGD	CGD	01.08.1968 (11.2015)	58.752	130.609	195	Галька, глина, вечная мерзлота	СМ-3КВ+ Байкал-11
17	Чернышев- ский	YCRN	CRN	14.07.2011	63.021	112.486	319	Галька, гравий	KS-2000+ Байкал-8
18	Чульман	CLNS	CHL	01.07.1963 (06.2015)	56.837	124.893	745	Песчаник	CMG-3ESPC+ CD-24
19	Юктали	YKLR	YKL	04.07.2004 (09.2013)	56.592	121.654	417	Суглинок	CMG-3ESPC+ CD-24
20	Якутск YAGSR, GSN, IMS CTBTO	YAK	YAK	05.10.1957 (24.09.2017)	62.031	129.680	91	Песчаник, вечная мерзлота	STS-1, STS-2.5+ Q330-HR

¹ показана дата последней модернизации, предыдущие см. в [1].

После обработки инструментальных данных со стационарных и полевых цифровых арктических станций (проект SIOLA) [1, 2] был составлен каталог якутских землетрясений за 2020 год. Параметры очагов землетрясений рассчитывались с использованием программного комплекса WSG [3] и привлечением сведений с пограничных пунктов регистрации Байкальского, Сахалинского и Магаданского филиалов ФИЦ ЕГС РАН. Представительность регистрации землетрясений для большей части территории соответствовала ее порогу в 2019 г. [1]. В Южной Якутии были представительны события с $K_P \ge 7$ для ее западной и с $K_P \ge 8-9 -$ для восточной части территории. На северо-востоке Якутии от побережья моря Лаптевых до Северного Приохотья (границы с регионом «Северо-Восток России и Чукотка») без пропусков фиксировались местные толчки с $K_P \ge 8$. В целом для всего Якутского региона полностью регистрировались землетрясения с $K_P \ge 11-12$. В дельте р. Лены сетью полевых и стационарных наблюдений не пропускались сейсмические явления, начиная с $K_P \ge 7$.

В электронном каталоге сейсмических событий Якутского региона [4] приведены параметры 464 землетрясений с M=1.3-4.0 ($K_P=6.3-11.2$) (в том числе восемь – по данным центра NEGSR) и 254 взрывов с M=1.7-2.6 ($K_P=7.0-8.6$), которые продублированы в сводный каталог взрывов [5]. Для 18 землетрясений в каталоге помещены альтернативные решения центров NEGSR, SAGSR и FCIAR. Все подземные толчки происходили в пределах земной коры на глубинах до 35 км. В печатном варианте каталога землетрясений [6] опубликованы параметры 138 событий с $M \ge 2.3$. Печатный вариант каталога взрывов [7] содержит данные 46 промышленных взрывов с $M \ge 2.0$. На основе каталога землетрясений [4] построена карта эпицентров (рис. I.25).

Рис. I.25. Карта эпицентров землетрясений на территории Якутии в 2020 г. Звездочкой показано самое сильное землетрясение в регионе

На соседних приграничных территориях центром YAGSR были определены параметры 24 землетрясений: 15 – на территории региона Северо-Востока России (в т.ч. два добавлены в каталог [8] в качестве основных решений, 13 – в качестве альтернативных решений); два – на территории региона Прибайкалье и Забайкалье (добавлены в каталог [9] в качестве основных решений); семь – в Арктике (в т.ч. два добавлены в каталог [10] в качестве основных решений, пять – в качестве альтернативных решений).

Пространственное положение эпицентров землетрясений в 2020 г. повторяет их локацию 2019 г. [1]. Очаги концентрируются в двух сейсмических поясах – Арктико-Азиатском на северо-востоке и Байкало-Становом в Олёкмо-Становой зоне (ОСЗ) на юге региона, – которые определяют границы Евразийской, Североамериканской и Амурской литосферных плит [11, 12]. Как и в прошлом году, в Якутии отмечен низкий уровень сейсмической активности. За весь 2020 г. было зарегистрировано 22 подземных толчка с $M \ge 3.1$ ($K_P \ge 9.5$) (в 2019 г. их было 25 [1]).

Наибольшая концентрация сейсмопроявлений отмечена в Олёкмо-Становой зоне (восточное продолжение Байкало-Станового пояса). Здесь выделяется широкий (до 200 км) кластер эпицентров, тяготеющих к области влияния крупного регионального Станового тектонического разлома [11, 12], разграничивающего Евразийскую и Амурскую литосферные плиты в широтном направлении от Олёкмо-Чарского нагорья (Байкальская рифтовая зоны) к Охотскому морю. В направлении запад–восток выделяются два скопления очагов землетрясений – более активный западный участок между меридианами 120° и 129°E (Олёкмо-Чарское нагорье, среднее течение р. Олёкмы, запад Алданского нагорья и др.) и слабоактивный восточный на востоке Алданского нагорья и в бассейне р. Учур [4].

Крупный кластер сейсмических возмущений проявился в пределах Южно-Якутского надвига на границе Чульманской впадины и Станового хребта, где более 30 лет назад имело место 8-балльное Южно-Якутское землетрясение 1989 г. с MS=6.6, которое ощущалось на площади более 1 *млн км*² [12]. Сейсмотектоническое «оживление» этой территории представлено многочисленной серией ударов (более 40), которые наблюдались на отрезке Южно-Якутского надвига на протяжении около 100 *км*. Среди них в июле и ноябре 2020 г. определены параметры трех наиболее сильных землетрясений с M=3.3 (K_P =9.9, 10.0) [4]. Более «спокойной» была восточная часть ОСЗ, где локализована группа редких слабых возмущений с K_P =8–9. Лишь землетрясение 24 апреля, произошедшее на юго-востоке хр. Лурикан в верховьях р. Учур, имело энергетический класс K_P =10.7 (M=3.7) [4].

На северо-востоке Якутии и в арктических районах Арктико-Азиатского пояса повторяются особенности распределения сейсмичности в виде отдельных сгущений серий эпицентров на фоне ее общего пониженного уровня. Такие сейсмоактивные «островки» землетрясений большей частью возникают из-за редкой сети инструментальных наблюдений и пропусков в фиксации слабых событий, а также больших расстояний между пунктами регистрации (до 400–600 км).

На карте эпицентров (рис. I.25) выделяются следующие подобные участки, связанные с тектоническими структурами: кластеры вдоль зоны влияния активных разломов (Илин-Тасский надвиг и сдвиг Улахан) в системе хребтов Момского и Черского, дельта р. Лены, восточная оконечность полуострова Таймыр и моретрясения в море Лаптевых и Восточно-Сибирском море [13, 14]. Так, например, подвижен сейсмоактивный разлом (Илин-Тасский надвиг), которому сопутствовали два подземных удара, произошедшие 7 апреля и 21 сентября вдоль контакта Момского хребта с Момо-Зырянской впадиной с M=3.3 и 3.0 ($K_P=10.0$ и 9.4) на глубинах 13 и 20 км соответственно.

В пределах дизъюнктива Улахан постоянно активен его юго-восточный фланг, что подтверждается толчком от 1 июня в $13^{h}27^{m}$ с M=4.0 ($K_{P}=11.2$), возникшем на глубине 7 км. Это землетрясение стало самым сильным в Якутском регионе за 2020 год.

Ближайший населенный пункт – пгт Усть-Нера – находился на расстоянии 146 км от эпицентра, сведений об ощутимости от его жителей не поступало.

Самая крупная группа, главным образом, слабых землетрясений была локализована в устье р. Лены. Этому способствовали совместные российско-германские исследования по проекту «Сейсмичность и неотектоника региона моря Лаптевых», согласно которым была задействована сеть из 25 полевых цифровых станций, полностью зарегистрировавшая за рассматриваемый период более 50 небольших толчков, начиная с $K_P=7$. Легко заметить эту полосу эпицентров, как бы отделяющую дельту р. Лены от континентальной территории и совпадающую с трассой Дюлюнгского взбросо-сдвига [11, 13]. Несомненна эффективность подобных исследований, позволивших получить детальную информацию о пространственно-временном распределении и существенно уточнить параметры эпицентров землетрясений. Кроме того, близкие эпицентральные расстояния и небольшие дистанции между станциями (5–30 км) дали возможность с большей точностью оценить глубины возникновения очагов. Так, при расчетах глубины выделились четыре осредненные группы: 0–10, 10–15, 14–25, 25–30 км.

В течение года небольшая активность фиксировалась на восточном побережье полуострова Таймыр, куда тяготеют коровые землетрясения 10 октября с M=3.3 ($K_P=9.9$), 12 ноября с M=3.2 ($K_P=9.8$) и 19 декабря с M=3.9 ($K_P=11.1$). Небольшое число сотрясений выявлено в акватории морей Лаптевых и Восточно-Сибирского.

Результаты мониторинга землетрясений на территории Якутии за последние пять лет (2016–2020 гг.) указывают на слабый уровень сейсмичности в регионе при стабильном появлении землетрясений на границах взаимодействия трех крупных литосферных (Евразийской, Североамериканской и Амурской) плит. Именно в их зонах контакта постоянно фиксируется максимум выделенной при землетрясениях сейсмической энергии в пределах Арктико-Азиатского пояса на северо-востоке и Байкало-Станового пояса (ОСЗ) на юге региона. Названный максимум постоянно мигрирует в зависимости от накопленных тектонических напряжений, формирующихся при развитии современных сейсмотектонических процессов на границах названных плит.

На рис. I.26 показана гистограмма суммарной сейсмической энергии, выделившейся на территории Якутии в 2016–2020 гг. (по данным [1, 4]). Уровень сейсмичности региона в 2020 г. согласно шкале «СОУС'09» [15] оценен как «фоновый пониженный» за 53-летний период наблюдений (с 1968 по 2020 г.) [16].

Рис. 1.26. Распределение сейсмической энергии, выделившейся на территории Якутии в 2016–2020 гг.

Литература

1. Шибаев С.В., Козьмин Б.М., Макаров А.А., Пересылкин Д.М., Наумова А.В., Старкова Н.Н. Результаты сейсмического мониторинга различных регионов России. Якутия // Землетрясения России в 2019 году. – Обнинск: ФИЦ ЕГС РАН, 2021. – С. 61–66.

2. Шибаев С.В., Козьмин Б.М., Петров А.Ф., Тимириин К.В., Пересыпкин Д.М., Наумова А.В., Старкова Н.Н. Результаты сейсмического мониторинга различных регионов России. Якутия // Землетрясения России в 2016 году. – Обнинск: ФИЦ ЕГС РАН, 2018. – С. 54–59.

3. Акимов А.П., Красилов С.А. Программный комплекс WSG «Система обработки сейсмических данных» / Свидетельство о государственной регистрации программы для ЭВМ № 2020664678 от 16.11.2020 г.

4. 2020-ER_App14_Yakutia.xls [Электронный ресурс]: Список приложений для ежегодника «Землетрясения России в 2020 году» // Землетрясения России [сайт]. – [Обнинск: ФИЦ ЕГ РАН, 2022]. Систем. требования: MS Excel, Open Office. – URL: http://www.gsras.ru/zr/app_20.html, свободный.

5. 2020-ER_App24_Catalogs_explosions.xls [Электронный ресурс]: Список приложений для ежегодника «Землетрясения России в 2020 году» // Землетрясения России [сайт]. – [Обнинск: ФИ ЕГС РАН, 2022]. Систем. требования: MS Excel, Open Office. – URL: http://www.gsras.ru/zr/ app_20.html, свободный.

6. Козьмин Б.М., Старкова Н.Н. (отв. сост.); Хастаева Е.В., Денега Е.Г., Андреева С.А. Каталоги землетрясений по различным регионам России. Якутия // Землетрясения России в 2020 году. – Обнинск: ФИЦ ЕГС РАН, 2022. – С. 153–155.

7. Сведения о наиболее крупных промышленных взрывах // Землетрясения России в 2020 году. – Обнинск: ФИЦ ЕГС РАН, 2022. – С. 172–183.

8. 2020-ER_App15_North-East-region-of-Russia.xls [Электронный ресурс]: Список приложений для ежегодника «Землетрясения России в 2020 году» // Землетрясения России [сайт]. – [Обнинск: ФИЦ ЕГС РАН, 2022]. Систем. требования: MS Excel, Open Office. – URL: http://www.gsras.ru/zr/app 20.html, свободный.

9. 2020-ER_App06_Lake-Baykal-and-Transbaykal-regions.xls [Электронный ресурс]: Список приложений для ежегодника «Землетрясения России в 2020 году» // Землетрясения России [сайт]. – [Обнинск: ФИЦ ЕГС РАН, 2022]. Систем. требования: MS Excel, Open Office. – URL: http://www.gsras.ru/zr/app_20.html, свободный.

10. 2020-ER_App04_Arctic-Basin.xls [Электронный ресурс]: Список приложений для ежегодника «Землетрясения России в 2020 году» // Землетрясения России [сайт]. – [Обнинск: ФИЦ ЕГС РАН, 2022]. Систем. требования: MS Excel, Open Office. – URL: http://www.gsras.ru/ zr/app_20.html, свободный.

11. Козьмин Б.М., Имаев В.С., Имаева Л.П. Сейсмичность и современная геодинамика // Тектоника, геодинамика и металлогения территории Республики Саха (Якутия). – М.: «МАИК Наука/Интерпериодика», 2001. – С. 33–67.

12. Имаев В.С., Имаева Л.П., Козьмин Б.М. Сейсмотектоника Якутии. – М.: ГЕОС, 2000. – 226 с.

13. Gessler W.H., Баранов Б.В., Шибаев С.В., Хаберланд С., Цуканов Н.В., Дозорова К.А. Российско-Германский проект «Сейсмичность и неотектоника Лаптевоморского региона» // Вестник КРАН. Науки о земле. – 2018. – № 1, вып. 37. – С. 102–106.

14. Имаева Л.П., Имаев В.С., Козьмин Б.М. и др. Сейсмотектоника северо-восточного сектора Российской Арктики. – Новосибирск: Изд-во СО РАН, 2017. – 136 с.

15. *Салтыков В.А.* Статистическая оценка уровня сейсмичности: методика и результаты применения на примере Камчатки // Вулканология и сейсмология. – 2011. – № 2. – С. 53–59.

16. Салтыков В.А., Кравченко Н.М., Пойгина С.Г. Качественный анализ сейсмичности. Оценка уровня сейсмичности регионов России // Землетрясения России в 2020 году. – Обнинск: ФИЦ ЕГС РАН, 2022. – С. 85–91.