II. Количественный анализ сейсмичности

Оценка уровня сейсмичности регионов России

¹В.А. Салтыков, ¹Н.М. Кравченко, ²С.Г. Пойгина
¹КФ ФИЦ ЕГС РАН, г. Петропавловск-Камчатский;
²ФИЦ ЕГС РАН, г. Обнинск

Введение

При общей количественной оценке уровня сейсмичности какой-либо территории за какой-либо период часто используются такие параметры как суммарная энергия произошедших землетрясений E и их число N, активность (A_{10} в частности) и наклон графика повторяемости (b – при использовании магнитудной шкалы или γ – при использовании энергетических классов). Однако при необходимости качественной оценки сейсмического режима (т.е. при необходимости заключения об аномально высоком или низком уровне сейсмичности или при необходимости сравнения состояния сейсмичности в двух регионах) возникают определенные сложности и использование напрямую упомянутых параметров не дает ответа на данный вопрос. Например, одна и та же выделившаяся сейсмическая энергия может быть аномально высокой для одного региона и аномально низкой для другого. В данной работе приведены результаты использования статистической функции распределения энергии в качестве параметра, характеризующего уровень сейсмичности.

Методика

Оценивается состояние сейсмичности региона в целом по эмпирической функции распределения выделившейся за определенный временной интервал сейсмической энергии: $F(K)=P(\lg E \le K)$, где E – суммарная сейсмическая энергия в $Д \mathscr{W}$. Тогда, задавая пороговые значения F и зная выделившуюся энергию E, мы можем сделать заключение о повышенной (например, если F>0.9) либо пониженной (например, если F<0.1) активности региона. Отметим, что расчет широко известных статистических параметров, таких как математическое ожидание и дисперсия, не может использоваться для энергии (или ее логарифма – энергетического класса), так как их распределение не относится к «красивым» распределениям, для которых аналогичный вывод можно было бы сделать, используя известные статистические критерии, без построения эмпирической функции распределения.

Обычно предъявляются достаточно высокие требования к используемому каталогу. Речь идет об его однородности и полноте. Следует отметить, что в первую очередь (если мы говорим об упоминаемых выше параметрах сейсмичности) чувствительными к качеству каталога являются: 1) число землетрясений N; 2) наклон графика повторяемости γ ; 3) активность A_{10} . Энергия E ведет себя гораздо более устойчиво, так как практически вся выделившаяся энергия определяется наиболее сильными землетрясениями. Это легко продемонстрировать на следующем примере: рассмотрим типичный случай, когда наклон графика повторяемости γ =0.5, и рассчитаем суммарную энергию землетрясений различного класса, а число таких землетрясений получим из закона Гутенберга-Рихтера [1]. Оказывается, что при использовании диапазона верхних энергетических классов в три единицы мы получаем оценку суммарной выделившейся энергии, составляющую около 98% от полной, а оценка соответствующего эквивалентного энергетического класса K=1g E отличается от истинной лишь на 0.01, что обычно пренебрежимо мало. Таким образом, мы можем использовать данную методику даже в том случае, когда уровень надежной регистрации достаточно низок, но имеются предпосылки того, что сильнейшие из произошедших событий все-таки регистрируются.

Используемые каталоги землетрясений

Каталог землетрясений, используемый в расчетах, собран из перечисленных ниже каталогов:

– региональные каталоги землетрясений с 1962 по 1991 г. – ежегодные сборники «Землетрясения в СССР» (электронная версия);

– региональные каталоги землетрясений за 1992–1998 гг. – ежегодные сборники «Землетрясения Северной Евразии» (электронная версия);

 – региональные каталоги землетрясений за 1999–2002 гг. – ежегодные сборники «Землетрясения Северной Евразии» (компакт-диски, прилагаемые к сборникам научных трудов);

– сводные каталоги землетрясений за 2003–2018 гг. – база данных «Землетрясения России» [2];

- сводный каталог землетрясений 2019 г. – настоящий ежегодник [3].

В различных регионах используются разные энергетические классификации землетрясений [4–7].

Если энергетический класс не был представлен в региональном каталоге, то он вычислялся из расчетной магнитуды M [8] по корреляционным зависимостям С.Л. Соловьёва $K_{\rm C}=2\cdot M+1.2$ [6] (для Сахалина и Курильских островов) или Т.Г. Раутиан $K_{\rm P}=1.8\cdot M+4$ [4, 5] для остальных регионов (кроме Камчатки).

Разделение на регионы

Территория России, в соответствии с принятой в ФИЦ ЕГС РАН регионализацией (см. [9] и Приложение), разделена для исследований на 11 регионов (рис. II.1).

Рис. II.1. Границы регионов на территории России

Функции распределения годовой сейсмической энергии для отдельных регионов

Функция распределения сейсмической энергии, выделившейся за один год для вышеуказанных регионов, показана на рис. II.2–II.11. На этих рисунках отмечено значение функции распределения в 2019 г. (радиус окружности соответствует величине погрешности определения).

І. *Северный Кавказ* (границы региона и карту расположения эпицентров землетрясений в 2019 г. см. на рис. I.4).

В 2019 г. суммарная энергия зарегистрированных землетрясений на Северном Кавказе составила 6.83·10¹² Дж. Функция распределения *F* построена по данным каталогов за 1962–2019 гг. (рис. II.2). Для 2019 г. *F*=0.51±0.07.

Рис. П.2. Функция распределения сейсмической энергии для региона Северный Кавказ

II. Восточно-Европейская платформа, Урал и Западная Сибирь (границы региона и карту расположения эпицентров землетрясений в 2019 г. см. на рис. I.8).

Для данного региона оценки функции распределения не рассчитывались в силу недостаточной статистики и неоднородности каталога.

Ш. *Арктика* (границы региона и карту расположения эпицентров землетрясений в 2019 г. см. на рис. I.11).

В 2019 г. суммарная энергия зарегистрированных землетрясений в Арктике составила 2.56·10¹² Дж. Функция распределения *F* построена по данным каталогов за 1965–2019 гг. (рис. II.3). Для 2019 г. *F*=0.36±0.07.

Рис. П.З. Функция распределения сейсмической энергии для региона Арктика

VI. *Алтай и Саяны* (границы региона и карту расположения эпицентров землетрясений в 2019 г. см. на рис. I.14).

В 2019 г. суммарная энергия зарегистрированных землетрясений в регионе Алтай и Саяны составила 4.74·10¹³ Дж. Функция распределения *F* построена по данным каталогов за 1962–2019 гг. (рис. II.4). Для 2019 г. *F*=0.63±0.06.

Рис. П.4. Функция распределения сейсмической энергии для региона Алтай и Саяны

V. *Прибайкалье и Забайкалье* (границы региона и карту расположения эпицентров землетрясений в 2019 г. см. на рис. I.17).

В 2019 г. суммарная энергия зарегистрированных землетрясений в регионе Прибайкалье и Забайкалье составила 2.95·10¹⁴ Дж. Функция распределения *F* построена по данным каталогов за 1962–2019 гг. (рис. II.5). Для 2019 г. *F*=0.82±0.05.

VI. *Приамурье и Приморье* (границы региона и карту расположения эпицентров землетрясений в 2019 г. см. на рис. I.20).

В 2019 г. суммарная энергия зарегистрированных землетрясений в регионе Приамурье и Приморье составила 2.43·10¹² Дж. Функция распределения *F* построена по данным каталогов за 1974–2019 гг. (рис. II.6). Для 2019 г. *F*=0.15±0.05.

VII. *Сахалин* (границы региона и карту расположения эпицентров землетрясений в 2019 г. см. на рис. I.20).

В 2019 г. суммарная энергия зарегистрированных землетрясений в регионе Сахалин составила 8.91·10¹⁰ Дж. Функция распределения *F* построена по данным каталогов за 1962–2019 гг. (рис. II.7). Для 2019 г. *F*=0.17±0.05.

Рис. П.7. Функция распределения сейсмической энергии для региона Сахалин

VIII. *Курило-Охотский регион* (границы региона и карту расположения эпицентров землетрясений в 2019 г. см. на рис. I.20).

В 2019 г. суммарная энергия зарегистрированных землетрясений в Курило-Охотском регионе составила 1.38·10¹⁴ Дж. Функция распределения *F* построена по данным каталогов за 1962–2019 гг. (рис. II.8). Для 2019 г. *F*=0.23±0.06.

IX. *Якутия* (границы региона и карту расположения эпицентров землетрясений в 2019 г. см. на рис. I.25).

В 2019 г. суммарная энергия зарегистрированных землетрясений в Якутском регионе составила 2.65·10¹² Дж. Функция распределения *F* построена по данным каталогов за 1968–2019 гг. (рис. II.9). Для 2019 г. *F*=0.28±0.06.

Рис. П.9. Функция распределения сейсмической энергии для Якутского региона

Х. *Северо-Восток России и Чукотка* (границы региона и карту расположения эпицентров землетрясений в 2019 г. см. на рис. I.28).

В 2019 г. суммарная энергия зарегистрированных землетрясений в регионе Северо-Восток России и Чукотка составила 1.77·10¹³ Дж. Функция распределения *F* построена по данным каталогов за 1968–2019 гг. (рис. II.10). Для 2019 г. *F*=0.78±0.06.

Рис. II.10. Функция распределения сейсмической энергии для региона Северо-Восток России и Чукотка

XI. *Камчатка и Командорские острова* (границы региона и карту расположения эпицентров землетрясений в 2019 г. см. на рис. I.31).

В 2019 г. суммарная энергия зарегистрированных землетрясений в Камчатском регионе составила 8.28·10¹⁴ Дж. Функция распределения *F* построена по данным каталогов за 1962–2019 гг. (рис. II.11). Для 2019 г. *F*=0.73±0.06.

Рис. II.11. Функция распределения сейсмической энергии для региона Камчатки и Командорских островов

Заключение

В.А. Салтыковым в [10] была предложена шкала уровня сейсмичности «СОУС'09», определяющая уровень сейсмичности, исходя из величины функции распределения *F*. Шкала включает пять основных и три дополнительные градации.

Основные градации:

- экстремально низкий F < 0.005,
- низкий 0.005<F<0.025,</p>
- ϕ оновый 0.025 < F < 0.975,
- высокий 0.975<*F*<0.995,
- экстремально высокий F > 0.995.

Фоновый уровень может быть разбит на три дополнительные градации:

- фоновый пониженный 0.025<F<0.15,
- фоновый средний 0.15<*F*<0.85,
- фоновый повышенный 0.85<*F*<0.975.

Оценки уровня сейсмичности в соответствии с этой шкалой в 2019 г. в регионах России показаны в табл. II.1.

Регион	F	Уровень сейсмичности
Северный Кавказ	0.51	фоновый средний
Арктика	0.36	фоновый средний
Алтай и Саяны	0.63	фоновый средний
Прибайкалье и Забайкалье	0.82	фоновый средний
Приамурье и Приморье	0.15	фоновый пониженный
Сахалин	0.17	фоновый средний
Курило-Охотский регион	0.23	фоновый средний
Якутия	0.28	фоновый средний
Северо-Восток России и Чукотка	0.78	фоновый средний
Камчатка и Командорские острова	0.73	фоновый средний

Таблица II.1. Значения функции распределения сейсмической энергии и категории уровня сейсмичности согласно шкале «СОУС'09» для 2019 г.

Таким образом, в основном сейсмичность всех регионов в 2019 г., как и в предыдущем году [11], соответствовала фоновому среднему уровню. Уровень сейсмичности оценивается как фоновый пониженный для Приамурья и Приморья и в пределах ошибки определения – для Сахалина.

Литература

1. *Gutenberg B., Richter C.* Magnitude and energy of earthquakes // Annali di Geofisica. – 1956. – Vol. 1, N 9. – P. 1–15.

2. База данных «Землетрясения России» [сайт]. – Дата обновления 25.01.2021. – URL: http://eqru.gsras.ru/

3. *Part_VII-2019. Total-catalog_2019. Total-catalog_earthquakes_2019.xls* // Землетрясения России в 2019 году. – Обнинск: ФИЦ ЕГС РАН, 2021. – Приложение на CD-ROM.

4. *Раутиан Т.Г.* Энергия землетрясений // Методы детального изучения сейсмичности. Глава 4. Труды ИФЗ АН СССР / Отв. ред. Ю.В. Ризниченко. – М.: Изд-во АН СССР, 1960. – № 9 (176). – С. 75–113.

5. *Раутиан Т.Г.* Об определении энергии землетрясений на расстоянии до 3000 км // Экспериментальная сейсмика. Труды ИФЗ АН СССР. – М.: Наука, 1964. – № 32 (199). – С. 88–93.

6. Соловьёв С.Л., Соловьёва О.Н. Соотношение между энергетическим классом и магнитудой Курильских землетрясений // Известия АН СССР, серия «Физика Земли». – 1967. – № 2. – С. 13–22.

7. Федотов С.А. Энергетическая классификация Курило-Камчатских землетрясений и проблема магнитуд. – М.: Наука, 1972. – 117 с.

8. Каталоги землетрясений по различным регионам России // Землетрясения России в 2019 году. – Обнинск: ФИЦ ЕГС РАН, 2021. – С. 131–134.

9. Маловичко А.А., Пойгина С.Г. Результаты сейсмического мониторинга различных регионов России. Общие сведения о сейсмичности России // Землетрясения России в 2019 году. – Обнинск: ФИЦ ЕГС РАН, 2021. – С. 10–16.

10. *Салтыков В.А.* Статистическая оценка уровня сейсмичности: методика и результаты применения на примере Камчатки // Вулканология и сейсмология. – 2011. – № 2. – С. 53–59.

11. Салтыков В.А., Кравченко Н.М., Пойгина С.Г., Воропаев П.В. Количественный анализ сейсмичности. Оценка уровня сейсмической активности регионов России // Землетрясения России в 2018 году. – Обнинск: ФИЦ ЕГС РАН, 2020. – С. 83–89.