
Якутия

¹С.В. Шибаев, ^{1,2}Б.М. Козьмин, ¹А.Ф. Петров, ¹Д.М. Пересыпкин, ¹А.В. Наумова, ¹Н.Н. Старкова

¹ЯФ ФИЦ ЕГС РАН, г. Якутск; ²ИГАБМ СО РАН, г. Якутск

Якутский филиал (ЯФ) ФИЦ ЕГС РАН проводил исследования сейсмичности территории Республики Саха (Якутия) на основе системы инструментальных наблюдений, включающей 21 цифровую сейсмическую станцию. В составе сети, относительно 2017 г. [1], произошли изменения. После ремонта в июле 2018 г. возобновила свою работу станция «Депутатский» (DEPR), в августе из-за сокращения финансирования была закрыта станция «Артык» (ATKR), на шести пунктах (YBGR, BLS, DEPR, MOMR, TNDR, UNR) проведена замена устаревшего оборудования. Расположение пунктов наблюдений представлено на рис. I.24, информация о станциях приведена в табл. I.19.

В 2018 г. продолжались полевые исследования сейсмической активности в арктических районах Якутии в рамках совместного проекта «Seismicity and neotectonics of Laptev Sea region (SIOLA)» (Сейсмичность и неотектоника региона моря Лаптевых) на 2016—2018 гг. Якутским филиалом ФИЦ ЕГС РАН, Институтом океанологии РАН им. Ширшова (г. Москва) и Гельмгольтцским центром полярных и морских исследований Полярного института им. Альфреда Вегенера (Германия). Большая часть временных станций сосредоточена по берегам губы Буор-Хая моря Лаптевых, их число (25) сохранилось с некоторым изменением локации некоторых из них, тип цифровой аппаратуры, в сравнении с 2016—2017 гг., остался без изменений [1, 2].

Рис. 1.24. Сейсмические станции на территории Якутии в 2018 г. Черный шрифт – международные коды сети (центра) и станций, зеленый шрифт – региональный код станции

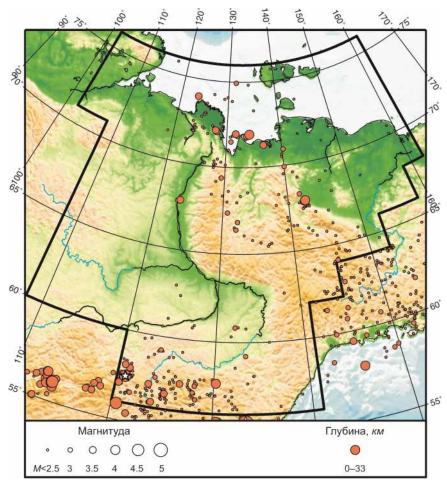
Таблица 1.19. Сведения о сейсмических станциях ЯФ ФИЦ ЕГС РАН (сеть YAGSR)

	Сейсмическая станция			Дата Координаты и высота открытия— над уровнем моря					
№	название станции, код сети	ко меж- дуна- родный	од регио- наль- ный	закрытия (модерни- зации ¹) [перерыв в работе]	φ, °N	λ, °E	h, м	Подпочва	Тип оборудования
	Алдан	ALDR	ALD	01.10.1999	58.610	125.410	662	Крупная галька, глина, вечная мерзлота	CME-6211+ PAR-4CH
2	Артык	ATKR	АТК	04.07.1988– 01.08.2018	64.181	145.133	700	Суглинок, га- лечник, вечная мерзлота	CM-3KB+ PAR-4CH
3	Батагай	BTGS	BTG	12.03.1975 (12.2014)	67.656	134.625	127	Глина, гравий, вечная мерзлота	CME-6211+ PAR-4CH
4	Белая Гора	YBGR	BGR	12.08.2011 (04.03.2018)	68.532	146.193	36	Глина, вечная мерзлота	KS-2000+ PAR-4CH; KS-2000+ Байкал-8
5	Булуус	BLSR	BLS	27.03.2012 (03.2018)	61.360	129.030	90	Галька	СМЕ-4011+ Байкал-8; СМЕ-6211+ Байкал-8
6	Витим	VTMR	VTM	16.06.2003 (06.2012)	59.440	112.550	188	Суглинок	CMG-3ESPC+ CD-24
7	Депутатский	DEPR	DEP	27.08.2003 [01.09.2017– 10.07.2018] (10.07.2018)	69.390	139.900	320	Вечная мерзлота	KS-2000+ PAR-4CH; CME-6011+ Байкал-8
8	Мома	MOMR	MOM	05.03.1983 (13.04.2018)	66.467	143.217	192	Глина, гравий, вечная мерзлота	KS-2000+ PAR-4CH; KS-2000+ Байкал-8
9	Олёкминск	OLMR	OLM	11.06.2010	60.376	120.463	45	Песок, вечная мерзлота	СМ-3КВ+ Байкал-8
10	Столб	SOTR	SOT	16.08.2013	72.403	126.812	50	Алевролиты, вечная мерзлота	СМЕ-6011+ Байкал-8
11	Табага	TBGR	TBG	24.06.2003 (06.2017)	61.821	129.637	98	Вечная мерзлота	СМЕ-6211+ Байкал-8
12	Тикси YAGSR, GSN, IMS CTBTO	TIXI	TIX	15.08.1995 (24.09.2017)	71.649	128.867	50	Доломиты, квар- циты, вечная мерзлота	STS-1, STS-2+ Q330-HR
13	Тында	TNDR	TND	20.06.2001 (13.04.2018)	55.147	124.721	530	Галька, глина	СМЕ-6011+ Байкал-8
14	Усть-Мая 2	-	USM	08.04.2006 (03.2017)	60.367	134.458	170	Глина, вечная мерзлота	KS-2000+ PAR-4CH
	Усть-Нера	UNR	UNR	21.11.1961 (10.09.2018)	64.566	143.228	485	Суглинки, веч- ная мерзлота	СКМ-3+ PAR-24B; CME-6211+ Байкал-8
16	Хани	KHNR	KHN	11.12.2005	56.921	119.979	690	Гранитогнейсы	СМ-3КВ+ Байкал-112

-

¹ показана дата последней модернизации, предыдущие см. в [1].

	Сейсмическая станция			Дата открытия–	Координаты и высота над уровнем моря				
Nº	название станции, код сети	ко меж- дуна- родный	регио-	закрытия (модерни- зации ¹) [перерыв в работе]	φ, °N	λ, °E	h, м	Подпочва	Тип оборудования
17	Чагда	CGD	CGD	01.08.1968 (11.2015)	58.752	130.609	195	Галька, глина, вечная мерзлота	СМ-3КВ+ Байкал-11
18	Чернышев- ский	YCRN	CRN	14.07.2011 [03.02.2018– 31.12.2018]	63.021	112.486	319	Галька, гравий	KS-2000+ Байкал-8
19	Чульман	CLNS	CHL	01.07.1963 (06.2015)	56.837	124.893	745	Песчаник	CMG-3ESPC+ CD-24
20	Юктали	YKLR	YKL	04.07.2004 (09.2013)	56.592	121.654	417	Суглинок	CMG-3ESPC+ CD-24
21	Якутск YAGSR, GSN, IMS CTBTO	YAK	YAK	05.10.1957 (24.09.2017)	62.031	129.680	91	Песчаник, вечная мерзлота	STS-1, STS-2+ Q330-HR


Как и в прошлом году [1], данные 25 временных автономных цифровых полевых сейсмических пунктов за период с сентября 2017 г. по август 2018 г. были помещены на переносные электронные носители для их дальнейшей обработки, установлены новые накопители и продолжена регистрация местных землетрясений.

Для определения параметров эпицентров землетрясений на границе с соседними регионами использовались данные обработки сетей станций Байкальского, Сахалинского и Магаданского филиалов ФИЦ ЕГС РАН. Представительность регистрации землетрясений для большей части территории сохранилась на уровне 2017 г. [1]. Исключение составила горная система хребта Черского на северо-востоке Якутии, где представительность понизилась с K_P =8 до K_P =8–9 ввиду приостановки работы станции DEPR и закрытия станции ARTR. Пропуски в регистрации также имели место на западе региона в связи с частичным закрытием из-за поломки аппаратуры станции «Чернышевский» (YCRN) (табл. I.19). В дельте реки Лены сетью полевых и стационарных сейсмостанций без пропусков регистрировались толчки с K_P ≥7.

В каталоге сейсмических событий Якутии приведены параметры 358 землетрясений с M=1.7–4.6 (KP=7.0–12.2) (в том числе девяти — по данным центра NEGSR и одного — по данным совместной обработки центров YAGSR и NEGSR) [3] и 252 взрывов с M=1.8–3.2 (KP=7.2–9.8) [4]. Все подземные толчки происходили в пределах земной коры на глубине до 33 κM . В печатном варианте каталога землетрясений [5] опубликованы параметры 139 событий региона с M≥2.3. Печатный вариант каталога взрывов [6] содержит данные 109 промышленных взрывов с M≥2.0.

На основе каталога землетрясений [3] составлена карта эпицентров, которая приведена на рис. I.25.

Пространственное положение эпицентров землетрясений в 2018 г. повторяет картину их распределения предыдущего 2017 г. [1]. Все проявления сейсмичности сосредоточены в двух крупных поясах: Арктико-Азиатском на северо-востоке и Байкало-Становом на юге региона, которые разграничивают между собой Евразийскую, Северо-американскую и Амурскую литосферные плиты, взаимодействующие в Северо-Восточной Азии [7]. Как и в прошлом году, в регионе сохранялся низкий уровень сейсмической активности. За весь период наблюдений было зарегистрировано 23 подземных толчка с M=3.1–4.2 (KP=9.5–11.6) (в 2017 г. их было 24 [1]).

Рис. I.25. Карта эпицентров землетрясений на территории Якутии в 2018 г. Звездочкой показано самое сильное землетрясение в регионе

В Южной Якутии, где выделяется Олёкмо-Становая сейсмотектоническая зона (восточная часть Байкало-Станового пояса), наблюдалось уменьшение числа выявленных сотрясений с M=1.8 (KP=7.2) от 225 (2017 г.) до 170 (2018 г.) или 48% от общего числа за год, что на 15% меньше, чем в 2017 году.

Олёкмо-Становая зона (ОСЗ) приурочена к зоне влияния крупного субширотного регионального Станового разлома, разделяющего Евразийскую и Амурскую литосферные плиты [7], занимает территорию между 56 и 58°Е и продолжает проявления землетрясений Байкальской рифтовой зоны к Охотскому морю. Вновь, как и в 2017 г. [1], максимум сейсмичности выявился на крайнем западе ОСЗ на Олёкмо-Чарском нагорье и западном окончании Станового хребта, который представлен 46 событиями, но это почти в 2 раза меньше, чем в 2017 г., когда их число достигало 70. Самыми активными были участки Чаруодинского 2005 г. и Нюкжинского 2011 г. роев [8, 9], где 4 и 6 апреля зарегистрированы три заметные землетрясения с M=3.6–3.7 (KP=10.5–10.6), а также более сильный толчок 9 декабря с M=4.2 (KP=11.6). Последний ощущался в ближайших населенных пунктах Чара и Новая Чара с интенсивностью 3–4 балла и на железнодорожной станции Хани на трассе БАМ — до 3 баллов. Указанные события возникли в пределах земной коры на глубине 15–25 κM .

При движении на восток количество произошедших местных землетрясений сопоставимо с таковыми на Олёкмо-Чарском нагорье, достигая в системе Станового хребта 59, а в районе Алданского нагорья — 54 подземных толчков, но меньше, чем в 2017 г. [1]. Большинство их гипоцентров располагалось по всей толще земной коры на глубинах 3–26 км. Следует выделить здесь три умеренных землетрясения. Одно было зарегистрировано в Становом хребте 4 декабря с M=3.7 (KP=10.7) на глубине 26 км. Два других локализованы на Алданском нагорье 11 июня с M=3.7 (KP=10.7) и 10 июля с M=3.9 (KP=11), оба – на глубине 10 км. В бассейне р. Учур на востоке ОСЗ было определено всего 11 подземных ударов, тяготеющих к хребту Лурикан.

На северо-востоке Республики Саха (Якутия) в 2018 г. сформировалось разрозненное «облако» в виде отдельных цепочек и групп эпицентров землетрясений, располагающихся по краям и внутри континентальной части Арктико-Азиатского сейсмического пояса. К ним относятся сейсмические возмущения, отмеченные в Северном Верхоянье и Яно-Оймяконском нагорье, которые образуют единую дугу из 44 слабых толчков с M=1.8-2.9 ($K_P=7.2-9.2$). Отдельная группа землетрясений (N=66) просматривается в центре системы хребта Черского и относится к афтершокам Илин-Тасского (Абыйского) землетрясения 2013 г. с интенсивным событием этого года, возникшим 5 апреля с M=4.2 ($K_P=11.5$) на глубине h=5 км. Появление данной группы связывается с современными подвижками по разломам Индигиро-Колымской системы Верхояно-Чукотской складчатой области [7].

Следующие серии небольших землетрясений также наблюдались на юговосточной окраине хребта Черского, западных склонах Верхоянского хребта и Приморской низменности. В пределах последней 9 июня в устье р. Яны на глубине $10 \ \kappa m$ был локализован толчок с M=3.7 (KP=10.7). На территории акватории и побережья моря Лаптевых более активны были участки в Янском заливе, губе Буор-Хая и устье р. Лены, где в общей сложности произошло 43 землетрясения. Самыми сильными среди них были моретрясения: 20 июля вблизи устья р. Лены с M=3.7 (KP=10.7, h=18 κm) и 8 августа в Янском заливе с M=4.2 (KP=11.5, h=25 κm).

Слабая сейсмичность в виде одиночных землетрясений имела место в восточной части Сибирской платформы на левобережье р. Лены и хребте Сетте-Дабан. В целом в регионе сохранялся устойчивый тренд спокойной сейсмической обстановки.

На рис. I.26 показана гистограмма суммарной сейсмической энергии, выделившейся на территории Якутии в 2014—2018 гг. (по данным [1, 3]). Уровень сейсмичности региона в 2018 г. согласно шкале «СОУС'09» [10] оценен как «фоновый средний» за 51-летний период наблюдений (с 1968 по 2018 г.) [11].

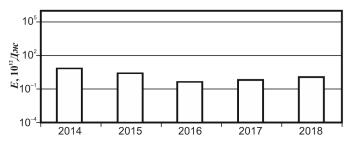


Рис. I.26. Распределение сейсмической энергии, выделившейся на территории Якутии в 2014—2018 гг.

Литература

- 1. Шибаев С.В., Козьмин Б.М., Петров А.Ф., Тимиршин К.В., Пересыпкин Д.М., Наумова А.В., Старкова Н.Н. Результаты сейсмического мониторинга различных регионов России. Якутия // Землетрясения России в 2017 году. Обнинск: ФИЦ ЕГС РАН, 2019. С. 56–61.
- 2. Шибаев С.В., Козьмин Б.М., Петров А.Ф., Тимиршин К.В., Пересыпкин Д.М., Наумова А.В., Старкова Н.Н. Результаты сейсмического мониторинга различных регионов России. Якутия // Землетрясения России в 2016 году. Обнинск: ФИЦ ЕГС РАН, 2018. С. 54–59.
- 3. *Part_IV-2018*. *09_Yakutia_2018.xls* // Землетрясения России в 2018 году. Обнинск: ФИЦ ЕГС РАН, 2020. Приложение на CD-ROM.

- 4. *Part_V-2018*. *Catalogs_explosions_2018.xls* // Землетрясения России в 2018 году. Обнинск: ФИЦ ЕГС РАН, 2020. Приложение на CD-ROM.
- 5. Шибаев С.В., Козьмин Б.М., Старкова Н.Н. (отв. сост.); Хастаева Е.В., Москаленко Т.П., Денега Е.Г. Каталоги землетрясений по различным регионам России. Якутия // Землетрясения России в 2018 году. Обнинск: ФИЦ ЕГС РАН, 2020. С. 161–163.
- 6. Сведения о наиболее крупных промышленных взрывах // Землетрясения России в 2018 году. Обнинск: ФИЦ ЕГС РАН, 2020. С. 183–192.
- 7. *Имаев В.С.*, *Имаева Л.П.*, *Козьмин Б.М.* Сейсмотектоника Якутии. М.: ГЕОС, 2000. 226 с.
- 8. Шибаев С.В., Петров А.Ф., Козьмин Б.М., Имаева Л.П., Мельникова В.И., Радзиминович Н.А., Тимиршин К.В., Петрова В.Е., Гилева Н.А., Пересыпкин Д.М. Чаруодинское-І 10 ноября в $19^{\rm h}29^{\rm m}$ с $K_{\rm P}{=}15.7$, $Mw{=}5.8$, $I_0{=}8$ и Чаруодинское ІІ 11 декабря в $15^{\rm h}54^{\rm m}$ с $K_{\rm P}{=}14.8$, $Mw{=}5.7$, $I_0{=}7$ (Южная Якутия) // Землетрясения Северной Евразии, 2005 год. Обнинск: ГС РАН, 2011. С. 404–418.
- 9. *Козьмин Б.М.*, *Михайлова Р.С.* Нюкжинский рой и его максимальный толчок 16 марта 2011 г. с K_P =13.5, Mw=5.1, I_0 =7 (Южная Якутия) // Землетрясения Северной Евразии, 2011 год. Обнинск: ФИЦ ЕГС РАН, 2017. С. 345–350.
- 10. *Салтыков В.А.* Статистическая оценка уровня сейсмичности: методика и результаты применения на примере Камчатки // Вулканология и сейсмология. 2011. № 2. С. 53–59.
- 11. Салтыков В.А., Кравченко Н.М., Пойгина С.Г., Воропаев П.В. Качественный анализ сейсмичности. Оценка уровня сейсмичности регионов России // Землетрясения России в 2018 году. Обнинск: ФИЦ ЕГС РАН, 2020. С. 82—87.