Сокращенные обозначения и аббревиатуры

Принятые сокращения

ФИЦ ЕГС РАН — Федеральное государственное бюджетное учреждение

науки Федеральный исследовательский центр «Единая геофизическая служба Российской академии наук»

АЭС – атомная электростанция

БАМ – Байкало-Амурская магистраль

БД – база данных

БРЗ – Байкальская рифтовая зона

ВЕП — Восточно-Европейская платформа

ГТУ – горно-тектонический ударГеоЭС – геотермальная электростанция

ГЭС – гидроэлектростанция

ДВЗЯИ – Договор о всеобъемлющем запрещении

ядерных испытаний

ДВО РАН — Дальневосточное отделение Российской академии наук **ИГАБМ СО РАН** Институт геологии алмаза и благородных металлов СО РАН

ИОЦ
 информационно-обрабатывающий центр

КМВ — Кавказские Минеральные Воды

 ЛСМ
 – лаборатория сейсмического мониторинга

 МГУ
 – Московский государственный университет

МЧС
 Министерство Российской Федерации по делам граждан-

ской обороны, чрезвычайным ситуациям и ликвидации

последствий стихийных бедствий

ОАО – Открытое акционерное общество

Программа ФНИ РАН – программа федеральных научных исследований РАН

- статистическая оценка уровня сейсмичности

(шкала и методика «СОУС'09»)

СП СПЦ — сейсмическая подсистема Системы предупреждения

о цунами

СУБД – система управления базами данныхСУБР – Североуральский бокситовый рудник

УрО РАН — Уральское отделение Российской академии наук

ЧАО – Чукотский автономный округ

Array — сейсмическая группа

CD-ROM – электронный оптический компакт-диск (CD)

только для чтения (ROM – read only memory)

DIMAS – программа обработки сейсмических данных

 G
 — масса взрывчатого вещества (m)

 GSN
 — Глобальная сейсмическая сеть

 IASPEI91
 — глобальная скоростная модель

IMGG – сейсмологический центр Института морской

геологии и геофизики ДВО РАН (г. Южно-Сахалинск)

IMS CTBTO — Международная система мониторинга,

организованная по ДВЗЯИ

ISC — Международный сейсмологический центр (Англия)
ISF — Международный формат IASPEI Seismic Format

h — высота станции над уровнем моря (M)

 HYP2DT
 — программа обработки сейсмических данных

 LocSat
 — программа обработки сейсмических данных

MSK-64 – Международная макросейсмическая шкала - количество станций, участвовавших в определении Nst параметров гипоцентра сейсмического события SeisComP3 – программный комплекс обработки сейсмических данных **VSAT** - Very Small Aperture Terminal - малая спутниковая наземная станция Оборудование **GS-1, GS-13** сейсмометр короткопериодный LE-3Dlite _"_ **Kinemetrics SV1/SH1** _"_ _"_ SeisMonitor СК-1П _"_ CKM-3, CKM, CKM-3M _"_ **CM-3, CM-3KB** _"_ СМ-Звч _"_ СКД - сейсмометр длиннопериодный CMG-3, CMG-3T, CMG-3TB, - сейсмометр широкополосный CMG-3T-Polar, CMG-6T, CMG-6TD CMG-3ESP, CMG-3ESPC, _"_ CMG-3ESPCD, CMG-3ESPCDE CMG-40T, CMG-40T-1 _ " _ CME-4011, CME-4311, **CME-6011** KS-2000 L4C-3D _"_ **STS-1, STS-2** _"-**CM-30C** _"_ KS-36000 - сейсмометр скважинный широкополосный AC-73iHHV – акселерометр A1638 CMG-5, CMG-5T, _"_ CMG-5TD, CMG-5TDE **FBA-23** _"_ _"_ JEP-6A3 ОСП, ОСП-2М - прибор для записи сильных движений PAR-24B, PAR-4CH - аналого-цифровой преобразователь CMG-DAS-S6, CMG-DAS-U-S6 – цифровая регистрирующая аппаратура CMG-DM24, CMG-DM24S3AM _"-_"_ DAT-4, DAT-5A **DM24** _"_ **EAM** _"_ **GMS**^{plus} _"_ **GSR-24** _"_ IRIS/IDA _"_ _"_ **IRIS/USGS** _"_ LS7000XT Q330, Q330HR – цифровая регистрирующая аппаратура Q680 _"-Quanterra-4124 _"_

RefTek 130S-01 цифровая регистрирующая аппаратура

" **SDAS UGRA** _ " _ Байкал, Байкал-8, Байкал-8.1, _ " _

Байкал-10, Байкал-11, Байкал-111, Байкал-112, Байкал-7HR, Байкал-ACN,

Байкал АС-75

Иркут _"_ CIICC "

MC – аналог ЦСС Байкал-11

Основные параметры землетрясения

 \boldsymbol{E} - сейсмическая энергия (Дж) h глубина гипоцентра (км)

- время возникновения сейсмического события t_0

(по Гринвичу)

- погрешность определения эпицентра в целом δ

 погрешность определения глубины гипоцентра (км) δh – погрешность определения времени возникновения (с) δt_0 δφ, δλ

– погрешность определения эпицентра по широте

и долготе (градус, км)

λ, ° – долгота (градус) – восточная долгота E φ, ° – широта (градус) N - северная широта

- интенсивность сотрясений в баллах по шкале MSK-64 I_0

K - энергетический класс любой

 $K_{\rm S}$ - энергетический класс по С.А. Федотову – энергетический класс по Т.Г. Раутиан $K_{\rm P}$

– энергетический класс по С.Л. и О.Н. Соловьёвым $K_{\rm C}$ - магнитуда, идентичная MLH (MS), пересчитанная M

из других типов магнитуд

ML- магнитуда локальная разных агентств

MLH (MLV) - магнитуда по поверхностной волне Релея LH(LV)

(аппаратура типа С, В/LР)

- магнитуда по волне PH (аппаратура типа C/LP) **MPH MPSP** — магнитуда по волне PV в дальней ($\Delta > 2000 \ \kappa M$) зоне

(аппаратура типа A/SP)

MPLP — магнитуда по волне PV в дальней ($\Delta > 2000 \ \kappa M$) зоне

(аппаратура типа C, B/LP)

MPV - магнитуда по волне PV (аппаратура типа C, B/MP, LP) **MPVA** — магнитуда по волне PV в ближней ($\Delta < 500 \ км$) зоне

(аппаратура типа A/SP)

MS – магнитуда по поверхностной волне Релея *LV*

(аппаратура типа С, В/LР)

MSH - магнитуда по волне *SH* (аппаратура типа C/LP) **MSHA** — магнитуда по волне SH в ближней ($\Delta < 500 \ км$) зоне

(аппаратура типа A/SP)

 M_0 - сейсмический момент

Mw- магнитуда моментная по Канамори

Параметры механизма очага землетрясения

 AZM
 – азимут осей (градус) главных напряжений

 DP
 – угол падения (градус) нодальной плоскости

NP1 — первая нодальная плоскостьNP2 — вторая нодальная плоскость

PL – угол погружения (градус) осей главных напряжений

относительно горизонта

 SLIP
 – угол скольжения (градус) нодальной плоскости

 STK
 – азимут (градус) простирания нодальной плоскости

T, N, P — оси главных напряжений: растяжения (T),

промежуточного (N), сжатия (P)

Параметры сейсмического режима

 A_{10} — средняя сейсмическая активность (для K=10)

F — эмпирическая функция распределения выделившейся

за определенный временной интервал сейсмической

энергии

наклон графика повторяемости при использовании

магнитудной шкалы

наклон графика повторяемости при использовании

энергетических классов