
Якутия

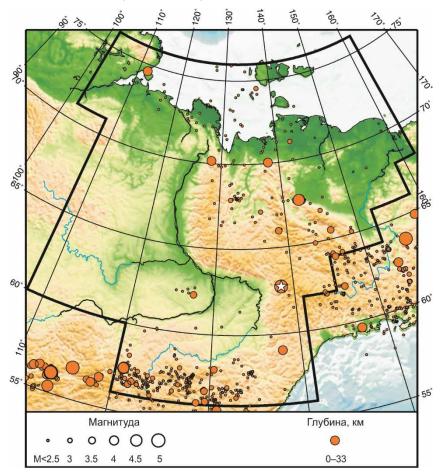
¹С.В. Шибаев, ^{1,2}Б.М. Козьмин, ¹А.Ф. Петров, ¹К.В. Тимиршин, ¹Д.М. Пересыпкин, ¹А.В. Наумова, ¹Н.Н. Старкова

 1 Якутский филиал ФИЦ ЕГС РАН, г. Якутск; 2 Институт геологии алмаза и благородных металлов СО РАН, г. Якутск

Якутский филиал ФИЦ ЕГС РАН проводил исследования сейсмичности территории Республики Саха (Якутия) на основе системы инструментальных наблюдений, включающей 23 сейсмические станции. В октябре 2014 г. была закрыта станция в поселке Нижний Бестях. В результате без изменений [1] осталась система наблюдений в арктических районах и на северо-востоке региона (девять станций), на юге (семь станций) и западе (три станции). В Центральной Якутии их количество сократилось до четырех (рис. I.24, табл. I.19).

Представительность сейсмологических данных отличалась от района к району в зависимости от плотности инструментальных наблюдений. Так, для Станового хребта (юг Якутии) на его западном фланге она начиналась с $M \ge 1.7$ ($K_P \ge 7$), а на восточном – с $M \ge 2.2 - 2.8$ ($K_P \ge 8 - 9$). На левобережье р. Лены (запад Якутии) без пропусков регистрировались землетрясения с $M \ge 2.8$ ($K_P \ge 9$). В центральных районах полностью фиксировались события с $M \ge 2.2$ ($K_P \ge 8$). В системе хр. Черского (северо-восток региона) представительными были подземные толчки с $M \ge 2.2 - 2.8$ ($K_P \ge 8 - 9$). На крайнем севере и в акватории Восточно-Арктических морей записывались все события с $M \ge 3.3 - 3.9$ ($K_P \ge 10 - 11$).

Рис. 1.24. Сейсмические станции на территории Якутии в 2015 г. Черный шрифт – международные коды сети (центра) и станций, зеленый шрифт – региональные коды станций


Таблица 1.19. Сведения о сейсмических станциях ЯФ ФИЦ ЕГС РАН (сеть YAGSR)

	Сейсмическая станция			Дата	Координаты и высота над уровнем моря				
№	Название, код сети	Код между- народ- ный	ц регио- наль- ный	открытия (установки нового оборудова- ния)	φ, °N	λ, °E	h, м	Подпочва	Тип оборудования
1	Алдан	ALDR	ALD	01.10.1999	58.610	125.410	662	Крупный галеч- ник, глина, веч- ная мерзлота	СМ-3КВ+ Байкал-111
2	Артык	ATKR	ATK	04.07.1988	64.181	145.133	700	Суглинок, галечник, вечная мерзлота	CM-3KB+ PAR-24B
3	Батагай	BTGS	BTG	12.03.1975	67.656	134.625	127	Глина, гравий, вечная мерзлота	CM-3OC+ SDAS
4	Белая Гора	YBGR	BGR	12.08.2011	68.532	146.193	36	Глина, вечная мерзлота	KS-2000+ PAR-4CH
5	Булус	-	BLS	27.03.2012	61.360	129.030	90	Галька	СМЕ-4011+ Байкал-8
6	Витим	VTMR	VTM	16.06.2003	59.440	112.550	188	Суглинок	CME-4011+ PAR-4CH
7	Депутатский	DEPR	DEP	27.08.2003	69.390	139.900	320	Вечная мерзлота	KS-2000+ PAR-4CH
8	Иенгра	IENR	IEN	10.07.2004	56.224	124.857	860	Гранитогнейсы	СМ-3КВ+ Байкал-11
9	Куберганя	-	KBR	18.04.2014	67.775	144.478	50	Вечная мерзлота	CME-6011+ PAR-4CH
10	Мома	MOMR	MOM	05.03.1983	66.467	143.217	192	Глина, гравий, вечная мерзлота	KS-2000+ PAR-4CH
11	Олёкминск	OLMR	OLM	11.06.2010	60.376	120.463	45	Песок, вечная мерзлота	СМ-3КВ+ Байкал-11
12	Столб	_	SOT	16.08.2013	72.403	126.812	50	Алевролиты, вечная мерзлота	СМЕ-6011+ Байкал-8
13	Табага	TBGR	TBG	24.06.2003	61.821	129.637	98	Вечная мерзлота	СМ-3КВ+ Байкал-11
14	Тикси YAGSR, IMS CTBTO	TIXI	TIX	15.08.1995 (21.09.2014)	71.649	128.867	50	Доломиты, квар- циты, вечная мерзлота	STS-1, GS-13+Q330
15	Тында	TNDR	TND	20.06.2001	55.147	124.721	530	Галька, глина	CM-3OC+ SDAS
16	Усть-Мая 2	_	USM	08.04.2006	60.367	134.458	170	Глина, вечная мерзлота	СМ-3КВ+ Байкал-11
17	Усть-Нера	UNR	UNR	21.11.1961	64.566	143.228	485	Суглинки, вечная мерзлота	CKM-3+ PAR-24B
18	Хани	KHNR	KHN	11.12.2005	56.921	119.979	690	Гранитогнейсы	СМ-3КВ+ Байкал-11
19	Чагда	CGD	CGD	01.08.1968	58.752	130.609	195	Галька, глина, вечная мерзлота	СМ-3КВ+ Байкал-11
20	Чернышевский	YCRN	CRN	14.07.2011	63.021	112.486	319	Галька, гравий	KS-2000+ Байкал-111
21	Чульман	CLNS	CHL	01.07.1963	56.837	124.893	745	Песчаник	CM-3OC+ SDAS
22	Юктали	YKLR	YKL	04.07.2004	56.592	121.654	417	Суглинок	CM-3KB+ PAR-4CH
23	Якутск YAGSR, IMS CTBTO	YAK	YAK	05.10.1957 (31.08.1993)	62.031	129.680	91	Песчаник, вечная мерзлота	STS-1, GS-13+ IRIS/USGS

При сводной обработке инструментальных наблюдений в приграничных участках территории с соседними регионами привлекались данные сети станций Байкальского, Сахалинского и Магаданского филиалов ФИЦ ЕГС РАН.

Каталог сейсмических событий Якутии за 2015 г. включает параметры 570 землетрясений с M=1.8–4.8 (KP=7.2–12.7) [2] и 419 взрывов с M=1.8–3.1 (KP=7.2–9.6) [3]. На соседних территориях центром YAGSR были определены параметры 40 землетрясений, которые были добавлены в соответствующие каталоги: Северо-Восток России [6] – девять событий в качестве альтернативных решений; Приамурье и Приморье [7] – 24 события в качестве основных решений и семь – в качестве альтернативных.

Очаги землетрясений располагались в пределах земной коры на глубинах 0–33 км. На основе каталога [2] построена карта эпицентров землетрясений (рис. I.25). В печатном варианте каталога землетрясений [4] опубликованы данные 236 событий региона с $M \ge 2.3$. Печатный вариант каталога взрывов [5] содержит данные 100 промышленных взрывов с M = 2.3 - 3.1 ($K_P = 8.1 - 9.6$).

Рис. 1.25. Карта эпицентров землетрясений на территории Якутии в 2015 г. Звездочкой показано самое сильное землетрясение в регионе

Уровень сейсмической активности в 2015 г. продолжал снижаться в сравнении с предыдущими 2013 и 2014 гг. [1, 8]. Большая часть землетрясений (свыше 300) отмечена в Южной Якутии в пределах Олёкмо-Становой сейсмотектонической зоны (ОСЗ), вытянутой в виде облака эпицентров землетрясений в субширотном направлении вдоль границы Евразийской и Амурской литосферных плит [9] от р. Олёкмы к Охотскому морю. К самым активным участкам на западном фланге относится Олёкмо-Чарское нагорье в переходной зоне от Байкальского рифта к ОСЗ, где не прерывается сейсмическая активность Чаруодинского роя, возникшего еще в 2005 г. и действующего уже более

десяти лет. В этом году здесь отмечено свыше 90 роевых событий. Два из них ощущались на ближайших железнодорожных станциях трассы БАМ. Первое землетрясение возникло 14 сентября в $09^{\rm h}06^{\rm m}$ с $M=4.3~(K_{\rm P}=11.7)$ и $h=10~\kappa M$. Его небольшие колебания в 3–4 балла наблюдались на станции Олёкма ($50~\kappa M$ к юго-востоку от эпицентра) и 3 балла – на станции Хани ($80~\kappa M$ к югу). Второе землетрясение, отмеченное 4 декабря в $13^{\rm h}27^{\rm m}$, было интенсивнее предыдущего – $M=4.6~(K_{\rm P}=12.3)$ и $h=18~\kappa M$. Макроэффекты при этом толчке выявлены на трех станциях БАМ: Олёкма ($54~\kappa M$ к юго-востоку от эпицентра) – 4 балла; Хани ($82~\kappa M$ к югу) – 3–4 балла; Новая Чара ($150~\kappa M$ к западу) – 3 балла. Для землетрясения 4 декабря в [10] помещено решение фокального механизма по данным Бай-кальского филиала ФИЦ ЕГС РАН, подтверждающее сбросовую подвижку в его очаге.

При перемещении на восток от реки Олёкмы темп современных тектонических движений снижается [11], что отражается в проявлениях сейсмичности. Так, в районе Станового хребта в основном регистрировались слабые землетрясения с M=1.8-3.7 ($K_P=7.2-10.7$), а их число едва достигало 80. На восточном окончании этого хребта в течение года наблюдалась небольшая активизация сейсмической деятельности, представленная группой из 29 афтершоков 7-балльного Гонамского события, произошедшего год назад 4 января 2014 г. с M=5.0 [1]. Самый сильный афтершок из этой серии отмечен 12 января $09^{\rm h}32^{\rm m}$ с M=3.7 ($K_P=10.7$). Еще два активных участка в ОСЗ выделяются на территории Алданского нагорья к северу от Станового хребта и в среднем течении реки Учур (правый приток р. Алдан), где в совокупности зарегистрировано свыше 100 слабых подземных толчков с M=1.8-3.0 ($K_P=7.2-9.4$).

Самое сильное землетрясение с M=4.8 (K_P =12.7) произошло 18 марта в Восточной Якутии на стыке хребтов Верхоянского и Сетте-Дабан. Его очаг располагался на глубине 7 κM и был приурочен к крупному региональному Бурхалинскому сдвигу [12]. В ближайшем к эпицентру поселке Теплый Ключ (75 κM к западу) выявились 3-балльные макросейсмические эффекты: был слышен легкий гул, раскачивались телевизоры, двигались холодильники, дрожала мебель. Сотрясения с интенсивностью 2–3 балла отмечены в поселках Хандыга (140 κM к юго-западу) и Джебарики-Хая (143 κM к югу), вблизи которого лед по зимнику на реке Алдан треснул и образовалась наледь. Колебания в 2 балла отмечены в поселках Сайды (148 κM к югу) и Охотский Перевоз (170 κM к югу). Общая площадь потрясений, значительная часть которых пришлась на участок автодороги Хандыга-Магадан, составила 16 κM сотрогах хр. Сетте-Дабан 14 сентября в 15 h 55 m с κM 3.9 (κM 4) и κM 5 гм.

Как обычно, второй сейсмически активной провинцией после ОСЗ являлась территория зоны взаимодействия Евразийской и Североамериканской литосферных плит, маркирующая сухопутную границу Арктико-Азиатского сейсмического пояса на северо-востоке Якутии. Наибольшая плотность землетрясений (более 100 событий с K_P =7.2–10.7) зафиксирована в системе хребтов Черского. Половина из них (свыше 50 толчков) являются афтершоками Абыйского (Илин-Тасского) землетрясения, отмеченного 14 февраля 2013 г. с M=6.9 в Момском хребте [8]. Повторный толчок 21 марта в 00^h22^m с M=4.3 (K_P =11.8) и h=9 κM ощущался в ближайшем селе Куберганя (90 κM к северо-востоку от эпицентра) с интенсивностью 3 балла. Северо-западнее хребта Черского в южной части Яно-Индигирской низменности имел место еще один интенсивный толчок с M=4.2 (K_P =11.6) и h=21 κM , возникший 7 мая в 22^h37^m .

В течение 2015 г. слабо активной была структура Верхоянского хребта, однако в ее северной части, представленной небольшим хребтом Хараулах, 10 сентября в $12^{\rm h}41^{\rm m}$ произошел подземный толчок с M=4.1 ($K_{\rm P}$ =11.3) и h=10 κM . Это событие интересно тем,

что ранее здесь регистрировались лишь редкие слабые сотрясения, хотя более 80 лет назад на этом участке были отмечены сильные 9-балльные Булунские землетрясения 1927-1928 гг. с M=6.8 [13].

Побережье и акватория моря Лаптевых и Восточно-Сибирского моря в арктической части территории Якутии характеризуются умеренной сейсмичностью. Особо выделяются две полосы сейсмичности. Первая пересекает в субдолготном направлении восточную часть шельфа моря Лаптевых и следится к губе Буор-Хая и Янскому заливу. Большинство отмеченных моретрясений с $K_P \le 10-11$ локализованы здесь в верхней части земной коры $(h=1-10\ \kappa m)$ и приурочены к впадинам окраинно-континентальной рифтовой системы, развитой на морском дне [9]. Вторая полоса в составе Лено-Таймырской сейсмической зоны протягивается через дельту реки Лены вдоль Оленёкского залива к полуострову Таймыр. Эти толчки — также мелкофокусные, а их энергетический класс не превышает $K_P = 8-10$. Среди них впервые в Хатангском заливе вблизи западного побережья о. Большой Бегичев проявилось землетрясение 26 мая в 04^h41^m с M = 4.1 ($K_P = 11.4$) и $h = 15\ \kappa m$.

Следует также указать на редкое для Сибирской платформы сейсмическое событие с M=3.7 (KP=10.7), которое произошло в 125 κm к западу от Якутска 25 октября в 13 $^{\rm h}08^{\rm m}$ на глубине h=29 κm .

В целом структура эпицентральных полей в регионе практически мало изменяется во времени, т.к. зависит от особенностей взаимодействия известных литосферных плит, господствующих на северо-востоке Азии [9].

На рис. I.26 показана гистограмма суммарной сейсмической энергии, выделившейся на территории Якутии в 2011-2015 гг. (по данным [1, 2]). Уровень сейсмичности региона в 2015 г. согласно шкале «СОУС'09» [14] оценен как «фоновый средний» за 48-летний период наблюдений (с 1968 по 2015 г.) [15].

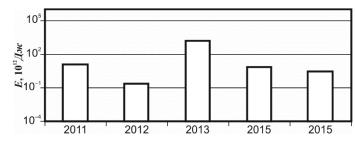


Рис. I.26. Распределение сейсмической энергии, выделившейся на территории Якутии в 2011—2015 гг.

Литература

- 1. Шибаев С.В., Козьмин Б.М., Петров А.Ф., Тимириин К.В., Пересыпкин Д.М., Лысова Г.В., Старкова Н.Н. Результаты сейсмического мониторинга различных регионов России. Якутия // Землетрясения России в 2014 году. Обнинск: ГС РАН, 2016. С. 51–55.
- 2. *Part_IV-2014*. 09_*Yakutia_2015.xls* // Землетрясения России в 2015 году. Обнинск: ФИЦ ЕГС РАН, 2017. Приложение на CD-ROM.
- 3. *Part_V-2014. Catalogs_explosions_2015.xls* // Землетрясения России в 2015 году. Обнинск: ФИЦ ЕГС РАН, 2017. Приложение на CD-ROM.
- 4. Шибаев С.В., Козьмин Б.М., Старкова Н.Н. (отв. сост.); Хастаева Е.В., Москаленко Т.П., Денега Е.Г. Каталоги землетрясений по различным регионам России. Якутия // Землетрясения России в 2015 году. Обнинск: ФИЦ ЕГС РАН, 2017. С. 150–153.
- 5. Сведения о наиболее крупных промышленных взрывах // Землетрясения России в 2015 году. Обнинск: ФИЦ ЕГС РАН, 2017. С. 178–191.
- 6. *Part_IV-2015*. *10_North-East-region-of-Russia_2015*.xls // Землетрясения России в 2015 году. Обнинск: ФИЦ ЕГС РАН, 2017. Приложение на CD-ROM.

- 7. Part_IV-2015. 06_Priamurye-and-Primorye_2015.xls // Землетрясения России в 2015 году. Обнинск: ФИЦ ЕГС РАН, 2017. Приложение на CD-ROM.
- 8. Шибаев С.В., Козьмин Б.М., Петров А.Ф., Тимиршин К.В., Пересыпкин Д.М., Лысова Г.В., Старкова Н.Н. Результаты сейсмического мониторинга различных регионов России. Якутия // Землетрясения России в 2013 году. Обнинск: ГС РАН, 2015. С. 49–53.
 - 9. Имаев В.С., Имаева Л.П., Козьмин Б.М. Сейсмотектоника Якутии. М.: ГЕОС, 2000. 226 с.
- 10. Габсатарова И.П., Гилёва Н.А., Богинская Н.В., Иванова Е.И., Малянова Л.С., Сафонов Д.А., Середкина А.И. Механизмы очагов отдельных землетрясений России // Землетрясения России в 2015 году. Обнинск: ФИЦ ЕГС РАН, 2017. С. 192—201.
- 11. Парфенов Л.М., Козьмин Б.М., Имаев В.С. и ∂p . Геодинамика Олёкмо-Становой сейсмической зоны. Якутск: Изд-во ЯФ СО АН СССР, 1985. 136 с.
- 12. Разломная тектоника территории Якутской АССР. Якутск: Изд-во Я Φ СО АН СССР, 1976. 174 с.
- 13. Новый каталог сильных землетрясений на территории СССР с древнейших времен до 1975 г. М.: Наука, 1977. 536 с.
- 14. *Салтыков В.А.* Формализованная оценка уровня сейсмичности на примере Камчатки и Байкальского региона // Современные методы обработки и интерпретации сейсмологических данных. Материалы Четвертой Международной сейсмологической школы. Обнинск: ГС РАН, 2009. С. 178–182.
- 15. Салтыков В.А., Кравченко Н.М., Пойгина С.Г., Воропаев П.В. Качественный анализ сейсмичности. Оценка уровня сейсмической активности регионов России // Землетрясения России в 2015 году. Обнинск: ФИЦ ЕГС РАН, 2017. С. 81–87.