III.2.2. Саянское землетрясение 10.02.2011 г. с *M*=5.1

А.Ф. Еманов, Е.В. Лескова, А.А. Еманов, В.Г. Подкорытова, Е.В. Шевкунова, Л.В. Цыбизов

2 февраля 2011 г. в $05^{\rm h}35^{\rm m}16^{\rm s}$ на территории горной системы Западного Саяна, в Саянском хребте произошло землетрясение с $M=5.1~(K_{\rm P}=13.9)$ (рис. III.19).

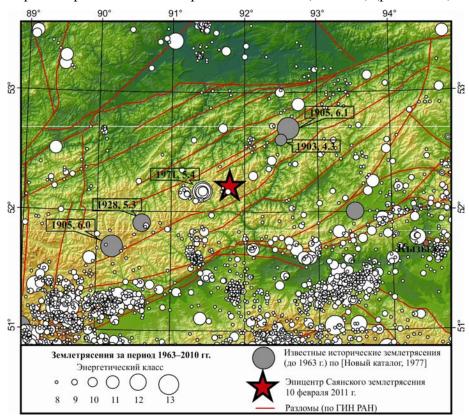
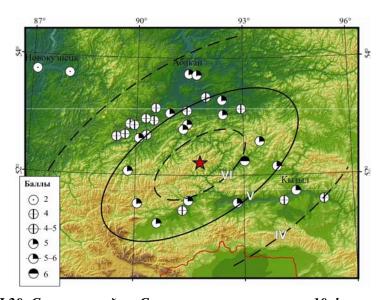


Рис. III.19. Эпицентр Саянского землетрясения 10 февраля 2011 г. и предшествующая сейсмичность (1900–2010 гг.)

Саянский хребет в системе Западного Саяна относится к Центрально-Саянскому блоку, максимальная высота Саянского хребта 2736 м, сложен преимущественно метаморфическими сланцами, гранитами, порфиритами и туфами. Вопросам сейсмотектоники Западного Саяна посвящены работы [Зятькова, 1973, 1977; Масарский и Рейснер, 1971; Чернов, 1978]. Западный Саян испытывает постоянное, но не очень быстрое поднятие. Скорость вертикальных поднятий в этой горной системе существенно меньше, чем на Алтае и в Байкальской рифтовой зоне. Сейсмическое районирование, выполненное по результатам изучения сейсмичности до середины семидесятых годов [Жалковский и др., 1978] показывает, что большим сейсмическим потенциалом обладают структуры к югу от Саянского хребта. Анализ взаимосвязей морфоструктур Западного Саяна с сейсмичностью [Лапин, 2009] указывает на разные закономерности в хребте до и после пересечения его рекой Енисей. К востоку от Енисея сейсмичность приурочена к зонам максимальных скоростей поднятий, а с западной – к границам блоков с разной скоростью поднятий. Саянский хребет расположен к востоку от р. Енисея.

Карта эпицентров землетрясений 1900–2010 гг. до Саянского землетрясения 2011 г. представлена на рис. III.19. До данного землетрясения наиболее сильным было Западно-Саянское землетрясение 1971 г. с MS=5.4, сопровождавшееся афтершоками. На юго-западном и северо-восточном окончаниях Западного Саяна известны землетрясения в доинструментальный период (1903 и 1905 гг.) с M=5–6 (серые кружки), но непосредственно эпицентральная зона была практически асейсмичной. Палеосейсмологические исследования в Западном Саяне [Зеленков, 1978; Чернов, 1978] позволили обосновать в Саянском хребте существование локальной области с сейсмическим потенциалом с M=7. Эпицентр рассматриваемого землетрясения входит в эту область. Саянское землетрясение приурочено к южному склону Саянского хребта вблизи вершины с максимальной отметкой высоты в данном хребте.

Сразу после Саянского землетрясения в данном районе были организованы полевые исследования, в результате которых был проведен сбор макросейсмической информации по данному землетрясению (табл. III.1) и выставлена сеть временных станций для регистрации его афтершоков.


Таблица III.1. Макросейсмические данные о Саянском землетрясении 10.02.2011 г.

№	Пункт	φ°, N	λ°, E	Δ , κM			
<u> 6 баллов</u>							
1	Верхнеусинское	52.24	93.03	93			
<u>5–6 баллов</u>							
2	Хор-Тайга	51.56	91.47	59			
3	Саяно-Шушенская ГЭС	52.83	91.37	74			
4	Черемушки	52.86	91.42	77			
5	Абаза	52.63	90.08	118			
6	Туран	52.15	93.92	196			
7	Кызыл	51.72	94.42	154			
<u> 5 баллов</u>							
8	Шагонар	51.53	92.80	81			
9	Саяногорск	53.09	91.42	102			
10	Большая Речка	53.03	92.42	107			
11	Бея	53.05	90.94	108			
12	Энге-Бельдир	51.49	90.07	127			
13	Арадан	52.58	93.44	129			
14	Большой Он	52.06	89.76	130			
15	Ермаковское	53.27	92.40	131			
16	Ак-Довурак	51.17	90.60	134			
17	Минусинск	53.71	91.69	170			
18	Абакан	53.73	91.46	174			

№	Пункт	φ°, N	λ°, E	Δ , κM				
<u>4–5 баллов</u>								
19	Аскиз	53.14	90.53	131				
	<u> 4 балла</u>							
20	Сут-Холь	51.41	91.30	89				
21	Малые Арбаты	52.69	90.29	109				
22	Бондарево	52.93	90.50	114				
23	Усть-Есь	52.96	90.25	129				
24	Танзыбей	53.13	92.94	136				
25	Имек	52.85	89.92	139				
26	Верхняя Сея	52.68	89.70	144				
27	Шушенское	53.33	91.94	144				
28	Таштып	52.86	89.82	146				
29	Матур	52.66	89.46	158				
30	Усть-Элегест	51.56	94.09	180				
31	Кундустуг	51.58	95.19	251				
	<u> 2 балла</u>							
32	Междуреченск	53.71	88.03	297				
33	Новокузнецк	53.74	87.11	350				
34	Ужур	55.32	89.86	368				
35	Барнаул	53.36	83.76	547				
36	Новосибирск	55.04	82.93	657				

Карта изосейст (рис. III.20) показывает, что изолинии равной сотрясаемости вытянуты вдоль горной системы Западного Саяна. Фактически сотрясаемость вдоль направлений с редкими горными поселками затухает медленнее, а в направлении густонаселенных долин быстрее. Несмотря на такую закономерность, сотрясаемость в пять баллов была в восточной половине Тувинской котловины.

Временная сеть станций (табл. III.2, рис. III.21) была выставлена по кругу радиусом примерно $70 \ \kappa m$ от эпицентра. Размещение станции на местности определялось труднодоступностью эпицентральной зоны, поскольку работы проводились в зимний период.

Puc. III.20. Схема изосейст Саянского землетрясения 10 февраля 2011 г.

Таблица III.2. Станции временной сети в районе Саянского землетрясения 10.02.2011 г.

№	Код станции	Координаты и высота над уровнем моря		Период работы		
		φ, °N	λ, °E	h, M	начало	конец
1	WS441	52.653	90.361	471	17.02.2011	07.04.2011
2	WS442	52.068	89.762	776	18.02.2011	07.04.2011
3	WS443	51.599	90.074	1418	18.02.2011	07.04.2011
4	WS444	51.441	90.340	1151	18.02.2011	07.04.2011
5	WS445	51.567	91.473	676	19.02.2011	07.04.2011
6	WS446	52.144	92.829	611	20.02.2011	12.04.2011
7	WS447	52.805	93.242	1392	21.02.2011	13.04.2011
8	WS448	53.038	92.427	373	21.02.2011	13.04.2011

За период работы временной сети (17 февраля – 13 апреля) было зарегистрировано и обработано 50 афтершоков, до начала ее работы – 45 афтершоков. На рис. III.21 представлена карта эпицентров всех землетрясений за период 10 февраля – 6 апреля 2011 г. Большинство афтершоков произошло в пространственно ограниченной области непосредственно около эпицентра Саянского землетрясения.

Механизм очага главного толчка — сдвиг с небольшой сбросовой компонентой. Ориентация плоскости подвижки возможна как вдоль Саянского хребта, так и поперек него, с большей вероятностью, что сдвиг произошел вдоль хребта. Конфигурация области афтершокового процесса почти круговая. На юго-востоке от очаговой области сформировалось скопление эпицентров событий, которое, вероятнее всего, является структурным элементом афтершокового процесса. Наличие этого элемента не дает возможности уточнить ориентацию плоскости подвижки при главном событии. Основное и юго-восточное скопления афтершоков укладываются в линию, перпендикулярную Саянскому хребту. Существующая зона затишья между этими элементами позволяет интерпретировать наличие юго-восточного скопления двояко: во-первых, этот элемент мог сформироваться как афтершоковая активность по плоскости разрыва, хотя и с перерывом; во-вторых, данный элемент могли составить афтершокового процесса легко формируются с учетом взгляды на структуру данного афтершокового процесса легко формируются с учетом взглядов на афтершоковые процессы крупных землетрясений в других регионах [Шебалин, 1997].

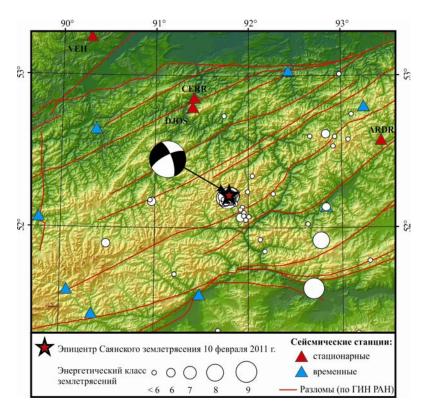


Рис. III.21. Эпицентры землетрясений в районе Западного Саяна за период 10 февраля – 6 апреля 2011 г.

Кроме афтершоков локальная сеть позволила с хорошей точностью зафиксировать небольшое количество рассеянных в центральной части Западного Саяна землетрясений. Обращают внимание на себя два наиболее сильные землетрясения, удаленные от эпицентра Саянского землетрясения $\approx 100~\kappa M$ на юго-восток к борту Тувинской котловины – 11 февраля с K_P =7.5 и 27 марта с K_P =8.5.

Результаты

Саянское землетрясение 10.02.2011 г. с M=5.1 (MS=5.1, $K_P=13.9$) приурочено к одноименному хребту в центральной части горной системы Западного Саяна. Это крупнейшее землетрясение в Саянском хребте. Активизировался участок, ранее не проявлявший себя в сейсмичности. Возникновение землетрясения такой силы в Саянском хребте увязывается с сейсмогеологическими данными, обосновавшими возможность возникновения в этой структуре землетрясений с магнитудами до 7.

Механизм очага Саянского землетрясения – сдвиг с небольшой сбросовой компонентой с плоскостью подвижки либо вдоль Саянского хребта, либо поперек него. Данные о пространственной структуре афтершоков не позволяют обосновать предпочтительность той или иной подвижки.

В структуре афтершокового процесса выделены два элемента: основным элементом является активизация в районе эпицентра Саянского землетрясения, второй составляют землетрясения в нескольких километрах на юго-восток от первого элемента.

По данным макросейсмических исследований затухание колебаний земной поверхности поперек Западного Саяна сильнее, чем вдоль него. В 5-балльную зону сотрясаемости от данного землетрясения вошли районы западной половины Тувинской котловины и населенных предгорных районов Хакасии и Красноярского края. Наиболее сильная сотрясаемость проявилась в горных поселках Западного Саяна.